Skip to main content

Computational Approaches to Homogeneous Gold Catalysis

  • Chapter
  • First Online:
Homogeneous Gold Catalysis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 357))

Abstract

Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold’s properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.

In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.

Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. King CV (1938) Catalysis of nitramide decomposition by colloidal platinum and gold. J Am Chem Soc 60:144–154

    CAS  Google Scholar 

  2. Benton AF, Elgin JC (1927) The catalytic synthesis of water vapor in contact with metallic gold. J Am Chem Soc 49:2426–2438

    CAS  Google Scholar 

  3. Bond GC (1972) The catalytic properties of gold. Gold Bull 5:11–13

    CAS  Google Scholar 

  4. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett 16:405

    Google Scholar 

  5. Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292

    CAS  Google Scholar 

  6. Ito Y, Sawamura M, Hayashi T (1986) Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J Am Chem 108:6405–6406

    CAS  Google Scholar 

  7. Fukuda Y, Utimoto K (1991) Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst. J Org Chem 56:3729–3731

    CAS  Google Scholar 

  8. Teles J, Brode S, Chabanas M (1998) Cationic gold (I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Chemie Int Ed 37:1415–1418

    CAS  Google Scholar 

  9. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed Engl 45:7896–7936

    Google Scholar 

  10. Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107:3180–3211

    CAS  Google Scholar 

  11. Braun I, Asiri AM, Hashmi ASK (2013) Gold catalysis 2.0. ACS Catal 3:1902–1907

    CAS  Google Scholar 

  12. Gorin DJ, Sherry BD, Toste FD (2008) Ligand effects in homogeneous Au catalysis. Chem Rev 108:3351–3378

    CAS  Google Scholar 

  13. Wang S, Zhang G, Zhang L (2010) Gold-catalyzed reaction of propargylic carboxylates via an initial 3,3-rearrangement. Synlett 2010:692–706

    Google Scholar 

  14. Wegner HA, Auzias M (2011) Gold for C-C coupling reactions: a Swiss-Army-knife catalyst? Angew Chem Int Ed Engl 50:8236–8247

    CAS  Google Scholar 

  15. López F, Mascareñas JL (2014) [4+2] and [4+3] catalytic cycloadditions of allenes. Chem Soc Rev 43:2904–2915

    Google Scholar 

  16. Hopkinson MN, Gee AD, Gouverneur V (2011) Au(I) /Au(III) catalysis: an alternative approach for C-C oxidative coupling. Chemistry 17:8248–8262

    CAS  Google Scholar 

  17. Corma A, Leyva-Pérez A, Sabater MJ (2011) Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem Rev 111:1657–1712

    CAS  Google Scholar 

  18. Jiménez-Núñez E, Echavarren AM (2008) Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. Chem Rev 108:3326–3350

    Google Scholar 

  19. Michelet V, Toullec PY, Genêt J-P (2008) Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights. Angew Chem Int Ed Engl 47:4268–4315

    CAS  Google Scholar 

  20. Alcaide B, Almendros P (2014) Gold-catalyzed cyclization reactions of allenol and alkynol derivatives. Acc Chem Res 47:939–952

    CAS  Google Scholar 

  21. Zhang D-H, Tang X-Y, Shi M (2014) Gold-catalyzed tandem reactions of methylenecyclopropanes and vinylidenecyclopropanes. Acc Chem Res 47:913–924

    CAS  Google Scholar 

  22. Krause N, Winter C (2011) Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. Chem Rev 111:1994–2009

    CAS  Google Scholar 

  23. Zhang L (2014) A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation. Acc Chem Res 47:877–888

    CAS  Google Scholar 

  24. Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals—characterized intermediates. Angew Chem Int Ed Engl 49:5232–5241

    CAS  Google Scholar 

  25. Liu L-P, Hammond GB (2012) Recent advances in the isolation and reactivity of organogold complexes. Chem Soc Rev 41:3129–3139

    CAS  Google Scholar 

  26. Soriano E, Marco-Contelles J (2009) Mechanistic insights on the cycloisomerization of polyunsaturated precursors catalyzed by platinum and gold complexes. Acc Chem Res 42:1026–1036

    CAS  Google Scholar 

  27. Obradors C, Echavarren AM (2014) Gold-catalyzed rearrangements and beyond. Acc Chem Res 47:902–912

    CAS  Google Scholar 

  28. Hashmi ASK (2014) Dual gold catalysis. Acc Chem Res 47:864–876

    CAS  Google Scholar 

  29. Fürstner A (2009) Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chem Soc Rev 38:3208–3221

    Google Scholar 

  30. Shapiro ND, Toste FD (2010) A reactivity-driven approach to the discovery and development of gold-catalyzed organic reactions. Synlett 2010:675–691

    Google Scholar 

  31. Fensterbank L, Malacria M (2014) Molecular complexity from polyunsaturated substrates: the gold catalysis approach. Acc Chem Res 47:953–965

    CAS  Google Scholar 

  32. Wang Y, Lackner AD, Toste FD (2014) Enantioselective gold catalysis. Acc Chem Res 47:889–901

    CAS  Google Scholar 

  33. Fürstner A (2014) From understanding to prediction : gold- and platinum-based pi-acid catalysis for target oriented synthesis. Acc Chem Res 47:925–938

    Google Scholar 

  34. Leyva-Pérez A, Corma A (2012) Similarities and differences between the “relativistic” triad gold, platinum, and mercury in catalysis. Angew Chem Int Ed Engl 51:614–635

    Google Scholar 

  35. Pitzer K (1979) Relativistic effects on chemical properties. Acc Chem Res 12:271–276

    CAS  Google Scholar 

  36. Pyykko P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594

    CAS  Google Scholar 

  37. Zhan J-H, Lv H, Yu Y, Zhang J-L (2012) Catalytic C-F bond activation of perfluoroarenes by tricoordinated gold(I) complexes. Adv Synth Catal 354:1529–1541

    CAS  Google Scholar 

  38. Haibach MC, Seidel D (2014) C-H bond functionalization through intramolecular hydride transfer. Angew Chem Int Ed Engl 53:5010–5036

    CAS  Google Scholar 

  39. Xie J, Pan C, Abdukader A, Zhu C (2014) Gold-catalyzed C(sp(3))-H bond functionalization. Chem Soc Rev 43:5245–5256

    CAS  Google Scholar 

  40. Hertwig RH, Koch W, Schröder D, Schwarz H, Hrusák J, Schwerdtfeger P (1996) A comparative computational study of cationic coinage metal - ethylene complexes (C2H4)M+ (M=Cu, Ag and Au). J Phys Chem 3654:12253–12260

    Google Scholar 

  41. Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed Engl 43:4412–4456

    Google Scholar 

  42. Pyykkö P (2008) Theoretical chemistry of gold III. Chem Soc Rev 37:1967–1997

    Google Scholar 

  43. Pyykkö P (2005) Theoretical chemistry of gold II. Inorganica Chim Acta 358:4113–4130

    Google Scholar 

  44. Pyykko P, Desclaux J (1979) Relativity and the periodic system of elements. Acc Chem Res 12:276–281

    CAS  Google Scholar 

  45. Frenking G, Fröhlich N (2000) The nature of the bonding in transition-metal compounds. Chem Rev 100:717–774

    CAS  Google Scholar 

  46. Schmidbaur H, Schier A (2012) Aurophilic interactions as a subject of current research: an up-date. Chem Soc Rev 41:370–412

    CAS  Google Scholar 

  47. Nechaev M (2004) Energy partitioning analysis of the bonding in ethylene and acetylene complexes of group 6, 8, and 11 metals: (CO) 5TM-C2H x and Cl4TM-C2H x (TM= Cr, Mo, W). J Phys Chem A 108:3134–3142

    CAS  Google Scholar 

  48. Fürstner A, Davies PW (2007) Catalytic carbophilic activation: catalysis by platinum and gold pi acids. Angew Chem Int Ed Engl 46:3410–3449

    Google Scholar 

  49. Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard III WA, Toste FD (2009) A bonding model for gold(I) carbene complexes. Nat Chem 1:482–486

    CAS  Google Scholar 

  50. Salvi N, Belpassi L, Tarantelli F (2010) On the Dewar–Chatt–Duncanson model for catalytic gold(I) complexes. Chem Eur J 16:7231–7240. doi:10.1002/chem.201000608

    CAS  Google Scholar 

  51. Bistoni G, Belpassi L, Tarantelli F (2013) Disentanglement of donation and back-donation effects on experimental observables: a case study of gold-ethyne complexes. Angew Chem Int Ed Engl 52:11599–11602

    CAS  Google Scholar 

  52. Hansmann MM, Rominger F, Hashmi ASK (2013) Gold-allenylidenes—an experimental and theoretical study. Chem Sci 4:1552–1559

    CAS  Google Scholar 

  53. Lalonde RL, Wang ZJ, Mba M, Lackner AD, Toste FD (2010) Gold(I)-catalyzed enantioselective synthesis of pyrazolidines, isoxazolidines, and tetrahydrooxazines. Angew Chem Int Ed Engl 49:598–601

    CAS  Google Scholar 

  54. Cera G, Bandini M (2013) Enantioselective gold(I) catalysis with chiral monodentate ligands. Isr J Chem 53:848–855

    CAS  Google Scholar 

  55. Teller H, Corbet M, Mantilli L, Gopakumar G, Goddard R, Thiel W, Fürstner A (2012) One-point binding ligands for asymmetric gold catalysis: phosphoramidites with a TADDOL-related but acyclic backbone. J Am Chem Soc 134:15331–15342

    Google Scholar 

  56. Francos J, Grande-Carmona F, Faustino H, Iglesias-Sigüenza J, Díez, E, Alonso I, Fernández R, Lassaletta JM, López F, Mascareñas JL (2012) Axially chiral triazoloisoquinolin-3-ylidene ligands in gold (I)-catalyzed asymmetric intermolecular (4+ 2) cycloadditions of allenamides and dienes. J Am Chem Soc 134:14322–14325

    Google Scholar 

  57. Hamilton GL, Kang EJ, Mba M, Toste FD (2007) A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317:496–499

    CAS  Google Scholar 

  58. Homs A, Obradors C, Lebœuf D, Echavarren AM (2014) Dissecting anion effects in gold(I)-catalyzed intermolecular cycloadditions. Adv Synth Catal 356:221–228

    CAS  Google Scholar 

  59. Salvi N, Belpassi L, Zuccaccia D, Tarantelli F, Macchioni A (2010) Ion pairing in NHC gold(I) olefin complexes: a combined experimental/theoretical study. J Organomet Chem 695:2679–2686

    CAS  Google Scholar 

  60. Zuccaccia D, Belpassi L (2009) Ion pairing in cationic olefin—gold (I) complexes. J Am Chem Soc 131:3170–3171

    CAS  Google Scholar 

  61. Zuccaccia D, Belpassi L, Macchioni A, Tarantelli F (2013) Ligand effects on bonding and ion pairing in cationic gold(I) catalysts bearing unsaturated hydrocarbons. Eur J Inorg Chem 2013:4121–4135

    CAS  Google Scholar 

  62. Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577:1–20

    CAS  Google Scholar 

  63. Perdew JP, McMullen ER, Zunger A (1981) Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge. Phys Rev A 23:2785–2789

    Google Scholar 

  64. Faza ON, De Lera AR (2011) DFT-based mechanistic insights into noble metal-catalyzed rearrangement of propargylic derivatives: chirality transfer processes. Top Curr Chem 302:81–130

    CAS  Google Scholar 

  65. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  66. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  67. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  68. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82(299)

    Google Scholar 

  69. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141

    CAS  Google Scholar 

  70. Wu Y, Genest A, Rösch N (2014) Does the preferred mechanism of a catalytic transformation depend on the density functional? Ethylene hydrosilylation by a metal complex as a case study. J Phys Chem A 118:3004–3013

    CAS  Google Scholar 

  71. Wu Y, Karttunen VA, Parker S, Genest A, Ro N (2013) Olefin hydrosilylation catalyzed by a bis-N-heterocyclic carbene rhodium complex. A density functional theory study. Organometallics 32:2363–2372

    CAS  Google Scholar 

  72. Albu TV, Swaminathan S (2006) Hybrid density functional theory with a specific reaction parameter: hydrogen abstraction reaction of trifluoromethane by the hydroxyl radical. Theor Chem Acc 117:383–395

    Google Scholar 

  73. Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622

    CAS  Google Scholar 

  74. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221

    CAS  Google Scholar 

  75. Curtiss LA, Raghavachari K, Pople JA (1995) Gaussian-2 theory: use of higher level correlation methods, quadratic configuration interaction geometries, and second-order Moller–Plesset zero-point energies. J Chem Phys 103:4192

    CAS  Google Scholar 

  76. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764

    CAS  Google Scholar 

  77. Curtiss LA, Redfern PC, Raghavachari K (2005) Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. J Chem Phys 123:124107

    Google Scholar 

  78. Řezáč J et al (2008) Quantum chemical benchmark energy and geometry database for molecular clusters and complex molecular systems (www.begdb.com): a users manual and examples. Collect Czech Chem Commun 73:1261–1270

    Google Scholar 

  79. Jurecka P, Sponer J, Cerný J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993

    CAS  Google Scholar 

  80. Rezáč J, Riley KE, Hobza P (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theor Comput 7:2427–2438

    Google Scholar 

  81. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    CAS  Google Scholar 

  82. Goerigk L, Grimme S (2010) A general database for main group thermochemistry, kinetics, and noncovalent interactions—assessment of common and reparameterized (meta-) GGA density. J Chem Theor Comput 6:107–126

    CAS  Google Scholar 

  83. Lynch BJ, Truhlar DG (2003) Small representative benchmarks for thermochemical calculations. J Phys Chem A 107:8996–8999

    CAS  Google Scholar 

  84. Zhao Y, Truhlar D (2011) Density functional theory for reaction energies: test of meta and hybrid meta functionals, range-separated functionals, and other high-performance functionals. J Chem Theor 7:669–676

    CAS  Google Scholar 

  85. Zhao Y, Truhlar DG (2005) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theor Comput 1:415–432

    CAS  Google Scholar 

  86. Zhao Y, Truhlar DG (2006) Assessment of density functionals for pi systems: energy differences between cumulenes and poly-ynes; proton affinities, bond length alternation, and torsional potentials of conjugated polyenes; and proton affinities of conjugated Shiff bases. J Phys Chem A 110:10478–10486

    CAS  Google Scholar 

  87. Zhao Y, Truhlar DG (2009) Benchmark energetic data in a model system for Grubbs II metathesis catalysis and their use for the development, assessment, and validation of electronic. J Chem Theor Comput 5:324–333

    CAS  Google Scholar 

  88. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    CAS  Google Scholar 

  89. Zhao Y, Truhlar DG (2011) Applications and validations of the Minnesota density functionals. ChEm Phys Lett 502:1–13

    CAS  Google Scholar 

  90. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241

    Google Scholar 

  91. Zhao Y, Lynch BJ, Truhlar DG (2004) Development and assessment of a new hybrid density functional model for thermochemical kinetics. J Phys Chem A 108:2715–2719

    CAS  Google Scholar 

  92. Zhao Y, González-García N, Truhlar DG (2005) Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J Phys Chem A 109:2012–2018

    CAS  Google Scholar 

  93. Schultz NE, Zhao Y, Truhlar DG (2005) Databases for transition element bonding: metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J Phys Chem A 109:4388–4403

    CAS  Google Scholar 

  94. Schultz NE, Zhao Y, Truhlar DG (2005) Density functionals for inorganometallic and organometallic chemistry. J Phys Chem A 109:11127–11143

    CAS  Google Scholar 

  95. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816

    CAS  Google Scholar 

  96. Yang K, Zheng J, Zhao Y, Truhlar DG (2010) Tests of the RPBE, revPBE, tau-HCTHhyb, omegaB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J Chem Phys 132:164117

    Google Scholar 

  97. Bühl M, Reimann C, Pantazis DA, Bredow T, Neese F (2008) Geometries of third-row transition-metal complexes from density-functional theory. J Chem Theor 4:1449–1459

    Google Scholar 

  98. Pantazis DA, Chen XY, Landis CR, Neese F (2008) All-electron scalar relativistic basis sets for third-row transition metal atoms. J Chem Theor Comput 4:908–919

    CAS  Google Scholar 

  99. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  100. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    CAS  Google Scholar 

  101. Faza ON, Rodríguez RÁ, López CS (2011) Performance of density functional theory on homogeneous gold catalysis. Theor Chem Acc 128:647–661

    CAS  Google Scholar 

  102. Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L (2008) Golden carousel in catalysis: the cationic gold/propargylic ester cycle. Angew Chem Int Ed Engl 47:718–721

    CAS  Google Scholar 

  103. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Google Scholar 

  104. Nava P, Hagebaum-Reignier D, Humbel S (2012) Bonding of gold with unsaturated species. Chemphyschem 13:2090–2096

    CAS  Google Scholar 

  105. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    CAS  Google Scholar 

  106. Riplinger C, Sandhoefer B, Hansen A, Neese F (2013) Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J Chem Phys 139:134101

    Google Scholar 

  107. Ciancaleoni G, Rampino S, Zuccaccia D, Tarantelli F, Belanzoni P, Belpassi L (2014) An ab initio benchmark and DFT validation study on gold(I)-catalyzed hydroamination of alkynes. J Chem Theor Comput 10:1021–1034

    Google Scholar 

  108. Kang R, Chen H, Shaik S, Yao J (2011) Assessment of theoretical methods for complexes of gold(I) and gold(III) with unsaturated aliphatic hydrocarbon: which density functional should we choose? J Chem Theor Comput 7:4002–4011

    CAS  Google Scholar 

  109. Peterson KA, Puzzarini C (2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 114:283–296

    CAS  Google Scholar 

  110. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(1007)

    Google Scholar 

  111. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101

    Google Scholar 

  112. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Google Scholar 

  113. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    CAS  Google Scholar 

  114. Johnson ER, Becke AD (2006) A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. J Chem Phys 124:174104

    Google Scholar 

  115. Johnson ER, Becke AD (2005) A post-Hartree-Fock model of intermolecular interactions. J Chem Phys 123:24101

    Google Scholar 

  116. Goerigk L, Grimme S (2010) Meta-GGA density functionals evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theor Comput 7:291–309

    Google Scholar 

  117. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    CAS  Google Scholar 

  118. Gdanitz R, Ahlrichs R (1988) The averaged coupled-pair functional (ACPF): a size-extensive modification of MR CI (SD). Chem Phys Lett 143:413–420

    CAS  Google Scholar 

  119. Andersson K, Malmqvist P-A, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218

    CAS  Google Scholar 

  120. Kang R, Lai W, Yao J, Shaik S, Chen H (2012) How accurate can a local coupled cluster approach be in computing the activation energies of late-transition-metal-catalyzed reactions with Au, Pt, and Ir ? J Chem Theor Comput 8:3119–3127

    CAS  Google Scholar 

  121. Schütz M (2002) Low-order scaling local electron correlation methods. V. Connected triples beyond (T): linear scaling local CCSDT-1b. J Chem Phys 116:8772

    Google Scholar 

  122. Hampel C, Werner H-J (1996) Local treatment of electron correlation in coupled cluster theory. J Chem Phys 104:6286

    CAS  Google Scholar 

  123. Werner H-J, Schütz M (2011) An efficient local coupled cluster method for accurate thermochemistry of large systems. J Chem Phys 135:144116

    Google Scholar 

  124. Figgen D, Peterson KA, Dolg M, Stoll H (2009) Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. J Chem Phys 130:164108

    Google Scholar 

  125. Otero-de-la-Roza A, Mallory JD, Johnson ER (2014) Metallophilic interactions from dispersion-corrected density-functional theory. J Chem Phys 140:18A504

    Google Scholar 

  126. O’Grady E, Kaltsoyannis N (2004) Does metallophilicity increase or decrease down group 11? Computational investigations of 2 (M = Cu, Ag, Au). Phys Chem Chem Phys 6:680–687

    Google Scholar 

  127. Koppen JV, Hapka M, Modrzejewski M, Szczęśniak MM, Chałasiński G (2014) Density functional theory approach to gold-ligand interactions: Separating true effects from artifacts. J Chem Phys 140:244313

    Google Scholar 

  128. Moncho S, Brothers EN, Janesko BG (2013) A benchmark study of H2 activation by Au3 and Ag3 clusters. J Phys Chem C 117:7487–7496

    Google Scholar 

  129. Zhao S, Ren Y, Ren Y, Wang J, Yin W (2010) Density functional study of hydrogen binding on gold and silver-gold clusters. J Phys Chem A 114:4917–4923

    CAS  Google Scholar 

  130. Varganov SA, Olson RM, Gordon MS, Mills G, Metiu H (2004) A study of the reactions of molecular hydrogen with small gold clusters. J Chem Phys 120:5169–5175

    CAS  Google Scholar 

  131. Stevens W, Krauss M (1992) Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can J Chem 70:612–613

    CAS  Google Scholar 

  132. Hehre WJ (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257

    CAS  Google Scholar 

  133. Determan JJ, Moncho S, Brothers EN, Janesko BG (2014) Simulating gold’s structure-dependent reactivity: nonlocal density functional theory studies of hydrogen activation by gold clusters, nanowires, and surfaces. J Phys Chem C 118:15693–15704

    Google Scholar 

  134. Muniz-Miranda F, Menziani MC, Pedone A (2014) Assessment of exchange-correlation functionals in reproducing the structure and optical gap of organic-protected gold nanoclusters. J Phys Chem C 118:7532–7544

    CAS  Google Scholar 

  135. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian 98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct Theor Chem 461–462:1–21

    Google Scholar 

  136. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    CAS  Google Scholar 

  137. Weymuth T, Couzijn EPA, Chen P, Reiher M (2014) New benchmark set of transition-metal coordination reactions for the assessment of density functionals. J Chem Theor Comput 10(8):3092–3103 (DOI:10.1021/ct500248h)

  138. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110

    Google Scholar 

  139. York DM, Karplus M (1999) A smooth solvation potential based on the conductor-like screening model. J Phys Chem A 103:11060–11079

    CAS  Google Scholar 

  140. Vallés-Pardo JL, Guijt MC, Iannuzzi M, Joya KS, de Groot HJM, Buda F (2012) Ab initio molecular dynamics study of water oxidation reaction pathways in mono-Ru catalysts. Chemphyschem 13:140–146

    Google Scholar 

  141. Stirling A, Nair NN, Lledós A, Ujaque G (2014) Challenges in modelling homogeneous catalysis: new answers from ab initio molecular dynamics to the controversy over the Wacker process. Chem Soc Rev 43:4940–4952

    CAS  Google Scholar 

  142. Vidossich P, Ujaque G, Lledós A (2014) Palladium monophosphine Pd(PPh3): is it really accessible in solution? Chem Commun (Camb) 50:661–663

    CAS  Google Scholar 

  143. Vummaleti SVC, Falivene L, Poater A, Cavallo L (2014) Deconstructing selectivity in the gold-promoted cyclization of alkynyl benzothioamides to six-membered mesoionic carbene or acyclic carbene complexes. ACS Catal 4:1287–1291

    CAS  Google Scholar 

  144. Xia Y, Huang G (2010) Mechanisms of the Au- and Pt-catalyzed intramolecular acetylenic Schmidt reactions: a DFT study. J Org Chem 75:7842–7854

    CAS  Google Scholar 

  145. Gorin DJ, Davis NR, Toste FD (2005) Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. J Am Chem Soc 127:11260–11261

    CAS  Google Scholar 

  146. Fang R, Su C, Zhao C, Phillips DL (2009) DFT study on the mechanism and regioselectivity of gold(I)-catalyzed synthesis of highly substituted furans based on 1-(1-alkynyl) cyclopropyl ketones with nucleophiles. Organometallics 28:741–748

    CAS  Google Scholar 

  147. Zhang J, Shen W, Li L, Li M (2009) Gold(I)-catalyzed cycloaddition of 1-(1-alkynyl) cyclopropyl ketones with nucleophiles to yield substituted furans: a DFT study. Organometallics 14:3129–3139

    Google Scholar 

  148. Xia Y, Dudnik AS, Gevorgyan V, Li Y (2008) Mechanistic insights into the gold-catalyzed cycloisomerization of bromoallenyl ketones: ligand-controlled regioselectivity. J Am Chem Soc 130:6940–6941

    CAS  Google Scholar 

  149. Dudnik AS, Xia Y, Li Y, Gevorgyan V (2010) Computation-guided development of Au-catalyzed cycloisomerizations proceeding via 1,2-Si or 1,2-H migrations: regiodivergent synthesis of silylfurans. J Am Chem Soc 132:7645–7655

    CAS  Google Scholar 

  150. Ariafard A, Asadollah E, Ostadebrahim M, Rajabi NA, Yates BF (2012) Theoretical investigation into the mechanism of Au(I)-catalyzed reaction of alcohols with 1,5 enynes. J Am Chem Soc 134:16882–16890

    CAS  Google Scholar 

  151. Fang R, Yang L (2012) Mechanism of the gold(I)-catalyzed rearrangement of alkynyl sulfoxides: a DFT study. Organometallics 31:3043–3055

    CAS  Google Scholar 

  152. Shapiro ND, Toste FD (2007) Rearrangement of alkynyl sulfoxides catalyzed by gold(I) complexes. J Am Chem Soc 129:4160–4161

    CAS  Google Scholar 

  153. López F, Mascareñas JL (2013) Gold(I)-catalyzed enantioselective cycloaddition reactions. Beilstein J Org Chem 9:2250–2264

    Google Scholar 

  154. Montserrat S, Faustino H, Lledós A, Mascareñas JL, López F, Ujaque G (2013) Mechanistic intricacies of gold-catalyzed intermolecular cycloadditions between allenamides and dienes. Chemistry 19:15248–15260

    Google Scholar 

  155. Cheong PH-Y, Morganelli P, Luzung MR, Houk KN, Toste FD (2008) Gold-catalyzed cycloisomerization of 1,5-allenynes via dual activation of an ene reaction. J Am Chem Soc 130:4517–4526

    CAS  Google Scholar 

  156. Roithová J, Janková Š, Jašíková L, Váňa J, Hybelbauerová S (2012) Gold-gold cooperation in the addition of methanol to alkynes. Angew Chem Int Ed Engl 51:8378–8382

    Google Scholar 

  157. Seidel G, Lehmann CW, Fürstner A (2010) Elementary steps in gold catalysis: the significance of gem-diauration. Angew Chem Int Ed Engl 49:8466–8470

    CAS  Google Scholar 

  158. Raubenheimer HG, Schmidbaur H (2012) Gold chemistry guided by the isolobality concept. Organometallics 31:2507–2522

    CAS  Google Scholar 

  159. Zhdanko A, Maier ME (2013) Quantitative evaluation of the stability of gem-diaurated species in reactions with nucleophiles. Organometallics 32:2000–2006

    CAS  Google Scholar 

  160. Zhdanko A, Maier ME (2014) The mechanism of gold(I)-catalyzed hydroalkoxylation of alkynes: an extensive experimental study. Chemistry 20:1918–1930

    CAS  Google Scholar 

  161. Zeng X, Kinjo R, Donnadieu B, Bertrand G (2010) Serendipitous discovery of the catalytic hydroammoniumation and methylamination of alkynes. Angew Chem Int Ed Engl 49:942–945

    CAS  Google Scholar 

  162. Hashmi ASK, Schuster AM, Rominger F (2009) Gold catalysis: isolation of vinylgold complexes derived from alkynes. Angew Chem Int Ed Engl 48:8247–8249

    CAS  Google Scholar 

  163. Vilhelmsen MH, Hashmi ASK (2014) Reaction mechanism for the dual gold-catalyzed synthesis of dibenzopentalene: a DFT study. Chemistry 20:1901–1908

    CAS  Google Scholar 

  164. Hansmann MM, Tšupova S, Rudolph M, Rominger F, Hashmi ASK (2014) Gold-catalyzed cyclization of diynes: controlling the mode of 5-endo versus 6-endo cyclization–an experimental and theoretical study by utilizing diethynylthiophenes. Chemistry 20:2215–2223

    CAS  Google Scholar 

  165. González-Arellano C, Corma A, Iglesias M, Sánchez F (2005) Enantioselective hydrogenation of alkenes and imines by a gold catalyst. Chem Commun (Camb) 9:3451–3453. doi:10.1039/b505271h

    Google Scholar 

  166. Ito H, Takagi K, Miyahara T, Sawamura M (2005) Gold(I)-phosphine catalyst for the highly chemoselective dehydrogenative silylation of alcohols. Org Lett 7:3001–3004

    CAS  Google Scholar 

  167. Crawford M-J, Klapötke TM (2002) Hydrides and iodides of gold. Angew Chem Int Ed Engl 41:2269–2271

    CAS  Google Scholar 

  168. Andrews L, Wang X (2003) Infrared spectra and structures of the stable CuH2-, AgH2-, AuH2-, and AuH4-anions and the AuH2 molecule. J Am Chem Soc 125:11751–11760

    CAS  Google Scholar 

  169. Tsui EY, Müller P, Sadighi JP (2008) Reactions of a stable monomeric gold(I) hydride complex. Angew Chem Int Ed Engl 47:8937–8940

    CAS  Google Scholar 

  170. Ito H, Saito T, Miyahara T, Zhong C, Sawamura M (2009) Gold(I) hydride intermediate in catalysis: dehydrogenative alcohol silylation catalyzed by gold(I) complex. Organometallics 28:4829–4840

    CAS  Google Scholar 

  171. Roşca D-A, Smith DA, Hughes DL, Bochmann M (2012) A thermally stable gold(III) hydride: synthesis, reactivity, and reductive condensation as a route to gold(II) complexes. Angew Chem Int Ed Engl 51:10643–10646

    Google Scholar 

  172. Comas-Vives A, Gonzalez-Arellano C, Corma A, Iglesias M, Sanchez F, Ujaque G (2006) Single-site homogeneous and heterogeneized gold(III) hydrogenation catalysts: mechanistic implications. J Am Chem Soc 128:4756–4765

    Google Scholar 

  173. Comas-Vives A, Gonzalez Arellano C, Boronat M, Corma A, Iglesias M, Sanchez F, Ujaque G (2008) Mechanistic analogies and differences between gold- and palladium-supported Schiff base complexes as hydrogenation catalysts: a combined kinetic and DFT study. J Catal 254:226–237

    Google Scholar 

  174. Comas-Vives A, Ujaque G (2013) Unraveling the pathway of gold(I)-catalyzed olefin hydrogenation: an ionic mechanism. J Am Chem Soc 135:1295–1305

    CAS  Google Scholar 

  175. Alcaide B, Almendros P, Martínez del Campo T, Fernández I (2011) Fascinating reactivity in gold catalysis: synthesis of oxetenes through rare 4-exo-dig allene cyclization and infrequent β-hydride elimination. Chem Commun (Camb) 47:9054–9056

    CAS  Google Scholar 

  176. Klatt G, Xu R, Pernpointner M, Molinari L, Quang Hung T, Rominger F, Hashmi ASK, Köppel H (2013) Are β-H eliminations or alkene insertions feasible elementary steps in catalytic cycles involving gold(I) alkyl species or gold(I) hydrides? Chemistry 19:3954–3961

    Google Scholar 

  177. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc 97:119–124

    CAS  Google Scholar 

  178. Sierka M, Hogekamp A, Ahlrichs R (2003) Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. J Chem Phys 118:9136

    CAS  Google Scholar 

  179. Tamaki A, Kochi J (1972) Catalytic mechanism involving oxidative addition in the coupling of alkylgold (I) with alkyl halides. J Organomet Chem 40:81–84

    Google Scholar 

  180. Tamaki A, Kochi J (1974) Oxidative addition in the coupling of alkylgold (I) with alkyl halides. J Organomet Chem 64:411–425

    CAS  Google Scholar 

  181. Hashmi ASK, Lothschütz C, Döpp R, Rudolph M, Ramamurthi TD, Rominger F (2009) Gold and palladium combined for cross-coupling. Angew Chem Int Ed Engl 48:8243–8246

    Google Scholar 

  182. Peña-López M, Ayán-Varela M, Sarandeses LA, Pérez Sestelo J (2010) Palladium-catalyzed cross-coupling reactions of organogold(I) reagents with organic electrophiles. Chemistry 16:9905–9909

    Google Scholar 

  183. Chan JMW, Amarante GW, Toste FD (2011) Tandem cycloisomerization/Suzuki coupling of arylethynyl MIDA boronates. Tetrahedron 67:4306–4312

    CAS  Google Scholar 

  184. González-Arellano C, Abad A, Corma A, García H, Iglesias M, Sánchez F (2007) Catalysis by gold(I) and gold(III): a parallelism between homo- and heterogeneous catalysts for copper-free Sonogashira cross-coupling reactions. Angew Chem Int Ed Engl 46:1536–1538

    Google Scholar 

  185. Lauterbach T, Livendahl M, Rosellón A (2010) Unlikeliness of Pd-free gold (I)-catalyzed Sonogashira coupling reactions. Org Lett 12:11293–11296

    Google Scholar 

  186. Beaumont SK, Kyriakou G, Lambert RM (2010) Identity of the active site in gold nanoparticle-catalyzed Sonogashira coupling of phenylacetylene and iodobenzene. J Am Chem Soc 132:12246–12248

    CAS  Google Scholar 

  187. Corma A, Juárez R, Boronat M, Sánchez F, Iglesias M, García H (2011) Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities. Chem Commun (Camb) 47:1446–1448

    Google Scholar 

  188. Brenzovich WE, Benitez D, Lackner AD, Shunatona HP, Tkatchouk E, Goddard WA, Toste FD (2010) Gold-catalyzed intramolecular aminoarylation of alkenes: C-C bond formation through bimolecular reductive elimination. Angew Chem Int Ed Engl 49:5519–5522

    Google Scholar 

  189. Zhang G, Cui L, Wang Y, Zhang L (2010) Homogeneous gold-catalyzed oxidative carboheterofunctionalization of alkenes. J Am Chem Soc 132:1474–1475

    CAS  Google Scholar 

  190. Zhang G, Peng Y, Cui L, Zhang L (2009) Gold-catalyzed homogeneous oxidative cross-coupling reactions. Angew Chem Int Ed Engl 48:3112–3115

    CAS  Google Scholar 

  191. Faza ON, López CS (2013) Computational study of gold-catalyzed homo- and cross-coupling reactions. J Org Chem 78:4929–4939

    CAS  Google Scholar 

  192. Hofer M, Gomez-Bengoa E, Nevado C (2014) A neutral gold(III)–boron transmetalation. Organometallics 33:1328–1332

    CAS  Google Scholar 

  193. Livendahl M, Goehry C, Maseras F, Echavarren AM (2014) Rationale for the sluggish oxidative addition of aryl halides to Au(I). Chem Commun (Camb) 50:1533–1536

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olalla Nieto Faza or Carlos Silva López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Faza, O.N., López, C.S. (2014). Computational Approaches to Homogeneous Gold Catalysis. In: Slaughter, L. (eds) Homogeneous Gold Catalysis. Topics in Current Chemistry, vol 357. Springer, Cham. https://doi.org/10.1007/128_2014_591

Download citation

Publish with us

Policies and ethics