Skip to main content

Anion Transport with Halogen Bonds

  • Chapter
  • First Online:
Halogen Bonding I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 358))

Abstract

This review covers the application of halogen bonds to transport anions across lipid bilayer membranes. The introduction provides a brief description of biological and synthetic transport systems. Emphasis is on examples that explore interactions beyond the coordination with lone pairs or hydrogen bonds for the recognition of cations and anions, particularly cation-π and anion-π interactions, and on structural motifs that are relevant for transport studies with halogen bonds. Section 2 summarizes the use of macrocyclic scaffolds to achieve transport with halogen bonds, focusing on cyclic arrays of halogen-bond donors of different strengths on top of calixarene scaffolds. This section also introduces methods to study anion binding in solution and anion transport in fluorogenic vesicles. In Sect. 3, transport studies with monomeric halogen bond-donors are summarized. This includes the smallest possible organic anion transporter, trifluoroiodomethane, a gas that can be bubbled through a suspension of vesicles to turn on transport. Anion transport with a gas nicely illustrates the power of halogen bonds for anion transport. Like hydrogen bonds, they are directional and strong, but compared to hydrogen-bond donors, halogen-bond donors are more lipophilic. Section 3 also offers a concise introduction to the measurement of ion selectivity in fluorogenic vesicles and conductance experiments in planar bilayer membranes. Section 4 introduces the formal unrolling of cyclic scaffolds into linear scaffolds that can span lipid bilayers. As privileged transmembrane scaffolds, the importance of hydrophobically matching fluorescent p-oligophenyl rods is fully confirmed. The first formal synthetic ion channel that operates by cooperative multiion hopping along transmembrane halogen-bonding cascades is described. Compared to homologs for anion-π interactions, transport with halogen bonds is clearly more powerful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakai N, Matile S (2013) Langmuir 29:9031–9040

    CAS  Google Scholar 

  2. Matile S, Fyles T (2013) Acc Chem Res 46:2741–2742

    CAS  Google Scholar 

  3. Gokel GW, Daschbach MM (2008) Coord Chem Rev 252:886–902

    CAS  Google Scholar 

  4. Tanaka Y, Kobuke Y, Sokabe M (1995) Angew Chem Int Ed 34:693–694

    CAS  Google Scholar 

  5. Tedesco MM, Ghebremariam B, Sakai N, Matile S (1999) Angew Chem Int Ed 38:540–543

    CAS  Google Scholar 

  6. Weiss LA, Sakai N, Ghebremariam B, Ni C, Matile S (1997) J Am Chem Soc 119:12142–12149

    CAS  Google Scholar 

  7. Davis AP, Sheppard DN, Smith BD (2007) Chem Soc Rev 36:348–357

    CAS  Google Scholar 

  8. Davis JT, Okunola O, Quesada R (2010) Chem Soc Rev 39:3843–3862

    CAS  Google Scholar 

  9. Gale PA, Pérez-Tomás R, Quesada R (2013) Acc Chem Res 46:2801–2813

    CAS  Google Scholar 

  10. Busschaert N, Gale PA (2013) Angew Chem Int Ed 52:1374–1382

    CAS  Google Scholar 

  11. Yau KH, Mak JC, Leung SW, Yang D, Vanhoutte PM (2012) PLoS One 7:e45340

    CAS  Google Scholar 

  12. Takeuchi T, Matile S (2013) Chem Commun 49:19–29

    CAS  Google Scholar 

  13. Bhosale S, Sisson AL, Talukdar P, Fürstenberg A, Banerji N, Vauthey E, Bollot G, Mareda J, Röger C, Würthner F, Sakai N, Matile S (2006) Science 313:84–86

    CAS  Google Scholar 

  14. Perez-Velasco A, Gorteau V, Matile S (2008) Angew Chem Int Ed 47:921–923

    CAS  Google Scholar 

  15. Zhao Y, Domoto Y, Orentas E, Beuchat C, Emery D, Mareda J, Sakai N, Matile S (2013) Angew Chem Int Ed 52:9940–9943

    CAS  Google Scholar 

  16. Bang EK, Gasparini G, Molinard G, Roux A, Sakai N, Matile S (2013) J Am Chem Soc 135:2088–2091

    CAS  Google Scholar 

  17. Li X, Shen B, Yao XQ, Yang D (2009) J Am Chem Soc 131:13676–13680

    CAS  Google Scholar 

  18. Santacroce PV, Davis JT, Light ME, Gale PA, Iglesias-Sanchez JC, Prados P, Quesada R (2007) J Am Chem Soc 129:1886–1887

    CAS  Google Scholar 

  19. Busschaert N, Bradberry SJ, Wenzel M, Haynes CJE, Hiscock JR, Kirby IL, Karagiannidis LE, Moore SJ, Wells NJ, Herniman J, Langley GJ, Horton PN, Light ME, Marques I, Costa PJ, Felix V, Frey JG, Gale PA (2013) Chem Sci 4:3036–3045

    CAS  Google Scholar 

  20. Busschaert N, Karagiannidis LE, Wenzel M, Haynes CJE, Wells NJ, Young PG, Makuc D, Plavec J, Jolliffe KA, Gale PA (2014) Chem Sci 5:1118–1127

    Google Scholar 

  21. Moore SJ, Wenzel M, Light ME, Morley R, Bradberry SJ, Gomez-Iglesias P, Soto-Cerrato V, Perez-Tomas R, Gale PA (2012) Chem Sci 3:2501–2509

    CAS  Google Scholar 

  22. Valkenier E, Davis AP (2013) Acc Chem Res 46:2898–2909

    CAS  Google Scholar 

  23. Sidorov V, Kotch FW, Abdrakhmanova G, Mizani R, Fettinger JC, Davis JT (2002) J Am Chem Soc 124:2267–2278

    CAS  Google Scholar 

  24. Seganish JL, Santacroce PV, Salimian KJ, Fettinger JC, Zavalij P, Davis JT (2006) Angew Chem Int Ed 45:3334–3338

    CAS  Google Scholar 

  25. Dawson RE, Hennig A, Weimann DP, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley CA, Matile S (2010) Nat Chem 2:533–538

    CAS  Google Scholar 

  26. Adriaenssens L, Estarellas C, Vargas Jentzsch A, Martinez Belmonte M, Matile S, Ballester P (2013) J Am Chem Soc 135:8324–8330

    CAS  Google Scholar 

  27. Gorteau V, Bollot G, Mareda J, Perez-Velasco A, Matile S (2006) J Am Chem Soc 128:14788–14789

    CAS  Google Scholar 

  28. Hennig A, Fischer L, Guichard G, Matile S (2009) J Am Chem Soc 131:16889–16895

    CAS  Google Scholar 

  29. Sakai N, Sordé N, Das G, Perrottet P, Gerard D, Matile S (2003) Org Biomol Chem 1:1226–1231

    CAS  Google Scholar 

  30. Talukdar P, Bollot G, Mareda J, Sakai N, Matile S (2005) Chem Eur J 11:6525–6532

    CAS  Google Scholar 

  31. Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S (2011) Angew Chem Int Ed 50:11675–11678

    CAS  Google Scholar 

  32. Vargas Jentzsch A, Emery D, Mareda J, Nayak SK, Metrangolo P, Resnati G, Sakai N, Matile S (2012) Nat Commun 3:905

    Google Scholar 

  33. Vargas Jentzsch A, Matile S (2013) J Am Chem Soc 135:5302–5303

    CAS  Google Scholar 

  34. Metrangolo P, Resnati G (2014) Top Curr Chem, This volume

    Google Scholar 

  35. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    CAS  Google Scholar 

  36. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) Acc Chem Res 46:2686–2695

    CAS  Google Scholar 

  37. Hassel O (1970) Science 170:497–502

    CAS  Google Scholar 

  38. Rissanen K (2008) CrystEngComm 10:1107–1113

    CAS  Google Scholar 

  39. Metrangolo P, Carcenac Y, Lahtinen M, Pilati T, Rissanen K, Vij A, Resnati G (2009) Science 323:1461–1464

    CAS  Google Scholar 

  40. Foster JA, Piepenbrock MOM, Lloyd GO, Clarke N, Howard JAK, Steed JW (2010) Nat Chem 2:1037–1043

    CAS  Google Scholar 

  41. Takeuchi T, Minato Y, Takase M, Shinmori H (2005) Tetrahedron Lett 46:9025–9027

    CAS  Google Scholar 

  42. You LY, Chen SG, Zhao X, Liu Y, Lan WX, Zhang Y, Lu HJ, Cao CY, Li ZT (2012) Angew Chem Int Ed 51:1657–1661

    CAS  Google Scholar 

  43. Sarwar MG, Ajami D, Theodorakopoulos G, Petsalakis ID, Rebek J (2013) J Am Chem Soc 135:13672–13675

    CAS  Google Scholar 

  44. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Banner DW, Haap W, Diederich F (2011) Angew Chem Int Ed 50:314–318

    CAS  Google Scholar 

  45. Lu Y, Liu Y, Xu Z, Li H, Liu H, Zhu W (2012) Expert Opin Drug Discov 7:375–383

    CAS  Google Scholar 

  46. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) J Med Chem 56:1363–1388

    CAS  Google Scholar 

  47. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci U S A 101:16789–16794

    CAS  Google Scholar 

  48. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M, Terraneo G (2010) Chem Soc Rev 39:3772–3783

    CAS  Google Scholar 

  49. Beale TM, Chudzinski MG, Sarwar MG, Taylor MS (2013) Chem Soc Rev 42:1667–1680

    CAS  Google Scholar 

  50. Mele A, Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) J Am Chem Soc 127:14972–14973

    CAS  Google Scholar 

  51. Spence GT, Beer PD (2013) Acc Chem Res 46:571–586

    CAS  Google Scholar 

  52. Sarwar MG, Dragisic B, Salsberg LJ, Gouliaras C, Taylor MS (2010) J Am Chem Soc 132:1646–1653

    CAS  Google Scholar 

  53. Zapata F, Caballero A, White NG, Claridge TDW, Costa PJ, Felix V, Beer PD (2012) J Am Chem Soc 134:11533–11541

    CAS  Google Scholar 

  54. Walter SM, Kniep F, Rout L, Schmidtchen FP, Herdtweck E, Huber SM (2012) J Am Chem Soc 134:8507–8512

    CAS  Google Scholar 

  55. Bruckmann A, Pena MA, Bolm C (2008) Synlett 2008:900–902

    Google Scholar 

  56. Lenoir D, Chiappe C (2003) Chem Eur J 9:1036–1044

    Google Scholar 

  57. Kraut DA, Churchil MJ, Dawson PE, Herschlag D (2009) ACS Chem Biol 4:269–273

    CAS  Google Scholar 

  58. Coulembier O, Meyer F, Dubois P (2010) Polym Chem 1:434–437

    CAS  Google Scholar 

  59. Walter SM, Kniep F, Herdtweck E, Huber SM (2011) Angew Chem Int Ed 50:7187–7191

    CAS  Google Scholar 

  60. Lindsay VNG, Lin W, Charette A (2011) J Am Chem Soc 131:16383–16385

    Google Scholar 

  61. Lindsay VNG, Charette AB (2012) ACS Cat 2:1221–1225

    CAS  Google Scholar 

  62. Kniep F, Rout L, Walter SM, Bensch HK, Jungbauer SH, Herdtweck E, Huber SM (2012) Chem Commun 48:9299–9301

    CAS  Google Scholar 

  63. Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM (2013) Angew Chem Int Ed 52:7028–7032

    CAS  Google Scholar 

  64. Matile S, Sakai N (2012) The characterization of synthetic ion channels and pores. In: Schalley CA (ed) Analytical supramolecular chemistry, 2nd edn. Wiley, Weinheim, pp 711–742

    Google Scholar 

  65. Abraham W (2002) J Incl Phen Macrocycl Chem 43:159–174

    CAS  Google Scholar 

  66. Araki K, Shimizu H, Shinkai S (1993) Chem Lett 1993:205–208

    Google Scholar 

  67. Harrowfield JM, Ogden M, Richmond WR, Skelton BW, White AH (1993) J Chem Soc Perkin Trans 2 1993:2183–2190

    Google Scholar 

  68. Salonen LM, Bucher C, Banner DW, Haap W, Mary JL, Benz J, Kuster O, Seiler P, Schweizer WB, Diederich F (2009) Angew Chem Int Ed 48:811–814

    CAS  Google Scholar 

  69. Renny JS, Tomasevich LL, Tallmadge EH, Collum DB (2013) Angew Chem Int Ed, doi: 10.1002/anie.201304157

    Google Scholar 

  70. Kano K, Fendler JH (1978) Biochim Biophys Acta 509:289–299

    CAS  Google Scholar 

  71. Hill AV (1913) Biochem J 7:471–480

    CAS  Google Scholar 

  72. Stadler E, Dedek P, Yamashita K, Regen SL (1994) J Am Chem Soc 116:6677–6682

    CAS  Google Scholar 

  73. Litvinchuk S, Sordé N, Matile S (2005) J Am Chem Soc 127:9316–9317

    CAS  Google Scholar 

  74. Bhosale S, Matile S (2006) Chirality 18:849–856

    CAS  Google Scholar 

  75. Behr JP, Kirch M, Lehn JM (1985) J Am Chem Soc 107:241–246

    CAS  Google Scholar 

  76. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    CAS  Google Scholar 

  77. Klotz KH, Benz R (1995) Biochim Biophys Acta 1235:378–386

    Google Scholar 

  78. Klotz KH, Benz R (1993) Biophys J 65:2661–2672

    CAS  Google Scholar 

  79. Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW III, Lu Z, Jonsson M, Kloo L (2011) Angew Chem Int Ed 50:11598–11620

    Google Scholar 

  80. Eisenman G, Horn R (1983) J Membr Biol 76:197–225

    CAS  Google Scholar 

  81. Wright EM, Diamond JM (1977) Physiol Rev 57:109–156

    CAS  Google Scholar 

  82. Hartzell C, Putzier I, Arreola J (2005) Annu Rev Physiol 67:719–758

    CAS  Google Scholar 

  83. Lindsdell P (2001) J Physiol 531:51–66

    Google Scholar 

  84. Gorteau V, Bollot G, Mareda J, Matile S (2007) Org Biomol Chem 5:3000–3012

    CAS  Google Scholar 

  85. Sakai N, Kamikawa Y, Nishii M, Matsuoka T, Kato T, Matile S (2006) J Am Chem Soc 128:2218–2219

    CAS  Google Scholar 

  86. Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  87. Sakai N, Houdebert D, Matile S (2003) Chem Eur J 9:223–232

    CAS  Google Scholar 

  88. Läuger P (1972) Science 178:24–30

    Google Scholar 

  89. Chen W (2006) Phys Rev E 73:021902-1-021902-7

    Google Scholar 

  90. Hansen SP, Fyles TM (2011) Chem Commun 47:6428–6430

    CAS  Google Scholar 

  91. Franciolini F, Nonner W (1987) J Gen Physiol 90:453–478

    CAS  Google Scholar 

  92. Koynova R, Caffrey M (1998) Biochim Biophys Acta 1376:91–145

    CAS  Google Scholar 

  93. Connell SD, Smith DA (2006) Mol Membr Biol 23:17–28

    CAS  Google Scholar 

  94. Otto S, Osifchin M, Regen SL (1999) J Am Chem Soc 121:10440–10441

    CAS  Google Scholar 

  95. Sakai N, Brennan KC, Weiss LA, Matile S (1997) J Am Chem Soc 119:8726–8727

    CAS  Google Scholar 

  96. Sakai N, Mareda J, Matile S (2005) Acc Chem Res 38:79–87

    CAS  Google Scholar 

  97. Sakai N, Mareda J, Matile S (2008) Acc Chem Res 41:1354–1365

    CAS  Google Scholar 

  98. Sakai N, Majumdar N, Matile S (1999) J Am Chem Soc 121:4294–4295

    CAS  Google Scholar 

  99. Ravikumar V, Fin A, Sakai N, Matile S (2011) Supramol Chem 23:69–73

    CAS  Google Scholar 

  100. Hennig A, Gabriel GJ, Tew GN, Matile S (2008) J Am Chem Soc 130:10338–10344

    CAS  Google Scholar 

  101. Baudry Y, Bollot G, Gorteau V, Litvinchuk S, Mareda J, Nishihara M, Pasini D, Perret F, Ronan D, Sakai N, Shah MR, Som A, Sordé N, Talukdar P, Tran DH, Matile S (2006) Adv Funct Mater 16:169–179

    CAS  Google Scholar 

  102. London E, Ladokhin AS (2002) Curr Top Membr 52:89–115

    CAS  Google Scholar 

  103. Ladokhin AS (1997) Methods Enzymol 278:462–473

    CAS  Google Scholar 

  104. Abrams FS, London E (1992) Biochemistry 31:5312–5322

    CAS  Google Scholar 

  105. Ni C, Matile S (1998) Chem Commun 33:755–756

    Google Scholar 

  106. Ghebremariam B, Sidorov V, Matile S (1999) Tetrahedron Lett 40:1445–1448

    CAS  Google Scholar 

  107. Sakai N, Baumeister B, Matile S (2000) ChemBioChem 1:123–125

    CAS  Google Scholar 

Download references

Acknowledgments

We warmly thank all past and present coworkers and collaborators for their contributions, particularly the groups of Jiri Mareda (Geneva) and Pierangelo Metrangolo and Giuseppe Resnati (Milano), and the University of Geneva, the European Research Council (ERC Advanced Investigator), the National Centre of Competence in Research (NCCR) Chemical Biology, and the Swiss NSF for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Matile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jentzsch, A.V., Matile, S. (2014). Anion Transport with Halogen Bonds. In: Metrangolo, P., Resnati, G. (eds) Halogen Bonding I. Topics in Current Chemistry, vol 358. Springer, Cham. https://doi.org/10.1007/128_2014_541

Download citation

Publish with us

Policies and ethics