Skip to main content

Condition Transition Analysis Reveals TF Activity Related to Nutrient-Limitation-Specific Effects of Oxygen Presence in Yeast

  • Conference paper
Book cover Computational Methods in Systems Biology (CMSB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4210))

Included in the following conference series:

  • 610 Accesses

Abstract

Regulatory networks are usually presented as graph structures showing the (combinatorial) regulatory effect of transcription factors (TF’s) on modules of similarly expressed or otherwise related genes. However, from these networks it is not clear when and how TF’s are activated. The actual conditions or perturbations that trigger a change in the activity of TF’s should be a crucial part of the generated regulatory network.

Here, we demonstrate the power to uncover TF activity by focusing on a small, homogeneous, yet well defined set of chemostat cultivation experiments, where the transcriptional response of yeast grown under four different nutrient limitations, both aerobically as well as anaerobically was measured. We define a condition transition as an instant change in yeast’s extracellular environment by comparing two cultivation conditions, where either the limited nutrient or the oxygen availability is different. Differential gene expression as a consequence of such a condition transition is represented in a tertiary matrix, where zero indicates no change in expression; 1 and -1 respectively indicate an increase and decrease in expression as a consequence of a condition transition. We uncover TF activity by assessing significant TF binding in the promotor region of genes that behave accordingly at a condition transition. The interrelatedness of the conditions in the combinatorial setup is exploited by performing specific hypergeometric tests that allow for the discovery of both individual and combined effects of the cultivation parameters on TF activity. Additionally, we create a weight-matrix indicating the involvement of each TF in each of the condition transitions by posing our problem as an orthogonal Procrustes problem. We show that the Procrustes analysis strengthens and broadens the uncovered relationships.

The resulting regulatory network reveals nutrient-limitation-specific effects of oxygen presence on expression behavior and TF activity. Our analysis identifies many TF’s that seem to play a very specific regulatory role at the nutrient and oxygen availability transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, N., Zhang, M.Q.: Functional genomics as applied to mapping transcription regulatory networks. Curr. Opin. Microbiol. 5, 313–317 (2002)

    Article  Google Scholar 

  2. Chua, G., Robinson, M.D., Morris, Q., Hughes, T.R.: Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr. Opin. Microbiol. 7(6), 638–646 (2004)

    Article  Google Scholar 

  3. Pilpel, Y., Sudarsanam, P., Church, G.M.: Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet. 29(2), 153–159 (2001)

    Article  Google Scholar 

  4. Bar-Joseph, Z., Gerber, G.K., Lee, T.I., Rinaldi, N.J., Yoo, J.Y., Robert, F., Gorden, D.B., Fraenkel, E., Jaakkola, T.S., Young, R.A., Gifford, D.K.: Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21(11), 1337–1342 (2003)

    Article  Google Scholar 

  5. Wang, W., Cherry, J.M., Nochomovitz, Y., Jolly, E., Botstein, D., Li, H.: Inference of combinatorial regulation in yeast transcriptional networks: a case study of sporulation. Proc. Natl. Acad. Sci. U.S.A. 102(6), 1998–2003 (2005)

    Article  Google Scholar 

  6. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)

    Article  Google Scholar 

  7. Ashburner, M., Ball, C.A., Rubin, G.M., Sherlock, G., et al.: Gene ontology: tool for the unification of biology the gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  8. Tai, S.L., Boer, V.M., Daran-Lapujade, P., Walsh, M.C., de Winde, J.H., Daran, J.M., Pronk, J.T.: Two-dimensional transcriptome analysis in chemostat cultures. J. Biol. Chem. 280(1), 437–447 (2005)

    Google Scholar 

  9. Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Fraenkel, E., Young, R.A., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004), 99–104 (2004)

    Article  Google Scholar 

  10. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98(9), 5116–5121 (2001)

    Article  MATH  Google Scholar 

  11. Knijnenburg, T.A., et al. (unpublished results)

    Google Scholar 

  12. Knijnenburg, T.A., Daran, J.M., Daran-Lapujade, P., Reinders, M.J.T., Wessels, L.F.A.: Relating transcription factors, modules of genes and cultivation conditions in saccharomyces cerevisiae. In: IEEE CSBW 2005, pp. 71–72 (2005)

    Google Scholar 

  13. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Patt. Anal. Machine Intell. PAMI-1, 224–227 (1979)

    Article  Google Scholar 

  14. Barash, Y., Bejerano, G., Friedman, N.: A simple hypergeometric approach for discovering putative transcription factor binding sites. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 278–293. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Ge, Y., Dudoit, S., Speed, T.P.: Resampling-based multiple testing for microarray data analysis. TEST 12(1), 1–77 (2003)

    Article  MathSciNet  Google Scholar 

  16. Bussemaker, H.J., Li, H., Siggia, E.D.: Regulatory element detection using correlation with expression. Nat. Genet. 27(2), 167–174 (2001)

    Article  Google Scholar 

  17. Gao, F., Foat, B.C., Bussemaker, H.J.: Defining transcriptional networks through integrative modeling of mrna expression and transcription factor binding data. BMC Bioinformatics 5(31) (2004)

    Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix Computations. The John Hopkins University Press, Maryland (1996)

    MATH  Google Scholar 

  19. Folsburg, S.L., Gaurente, L.: Identification and characterization of hap4: a third component of the ccaat-bound hap2/hap3 heteromer. Genes Dev. 3(8), 1166–1178 (1989)

    Article  Google Scholar 

  20. Yeast protein database, http://www.proteome.com

  21. Blaiseau, P.L., Thomas, D.: Multiple transcriptional activation complexes tether the yeast activator met4 to dna. EMBO J. 17(21), 6327–6336 (1998)

    Article  Google Scholar 

  22. Magasanik, B., Kaiser, C.A.: Nitrogen regulation in saccharomyces cerevisiae. Gene 290, 1–18 (2002)

    Article  Google Scholar 

  23. Passmore, S., Elbe, R., Tye, B.K.: A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev. 3, 921–935 (1989)

    Article  Google Scholar 

  24. Chen, Y., Tye, B.K.: The yeast mcm1 protein is regulated posttranscriptionally by the flux of glycolysis. Mol. Cell. Biol. 15(8), 4631–4639 (1995)

    Google Scholar 

  25. Newcomb, L.L., Diderich, J.A., Slattery, M.G., Heideman, W.: Glucose regulation of saccharomyces cerevisiae cell cycle genes. Eukaryot. Cell. 2(1), 143–149 (2003)

    Article  Google Scholar 

  26. Wu, J., Zhang, N., Hayes, A., Panoutsopoulou, K., Oliver, S.G.: Global analysis of nutrient control of gene expression in saccharomyces cerevisiae during growth and starvation. Proc. Natl. Acad. Sci. U.S.A. 101(9), 3148–3153 (2004)

    Article  Google Scholar 

  27. Jamieson, D.J.: Oxidative stress responses of the yeast saccharomyces cerevisiae. Yeast 14(16), 1511–1527 (1998)

    Article  Google Scholar 

  28. Gasch, A.P., Werner-Washburne, M.: The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics (4-5), 181–192 (2002)

    Article  Google Scholar 

  29. Mewes, H.W., Albermann, K., Heumann, K., Liebl, S., Pfeiffer, F.: Mips: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Research 25(1), 28–30 (1997)

    Article  Google Scholar 

  30. Kohlhaw, G.B.: Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol. Mol. Biol. Rev. 67(1), 1–15 (2003)

    Article  Google Scholar 

  31. Boer, V.M., Daran, J.M., Almering, M.J., de Winde, J.H., Pronk, J.T.: Contribution of the saccharomyces cerevisiae transcriptional regulator leu3p to physiology and gene expression in nitrogen-and carbon-limited chemostat cultures. FEMS Yeast Res. 5(10), 885–897 (2005)

    Article  Google Scholar 

  32. Mendoza-Cozatl, D., Loza-Tavera, H., Hernandez-Navarro, A., Moreno-Sanchez, R.: Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29(4), 653–671 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knijnenburg, T.A., Wessels, L.F.A., Reinders, M.J.T. (2006). Condition Transition Analysis Reveals TF Activity Related to Nutrient-Limitation-Specific Effects of Oxygen Presence in Yeast. In: Priami, C. (eds) Computational Methods in Systems Biology. CMSB 2006. Lecture Notes in Computer Science(), vol 4210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11885191_19

Download citation

  • DOI: https://doi.org/10.1007/11885191_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46166-1

  • Online ISBN: 978-3-540-46167-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics