Skip to main content

Spike-Timing Dependent Plasticity Learning for Visual-Based Obstacles Avoidance

  • Conference paper
  • 1705 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Abstract

In this paper, we train a robot to learn online a task of obstacles avoidance. The robot has at its disposal only its visual input from a linear camera in an arena whose walls are composed of random black and white stripes. The robot is controlled by a recurrent spiking neural network (integrate and fire). The learning rule is the spike-time dependent plasticity (STDP) and its counterpart – the so-called anti-STDP. Since the task itself requires some temporal integration, the neural substrate is the network’s own dynamics. The behaviors of avoidance we obtain are homogenous and elegant. In addition, we observe the emergence of a neural selectivity to the distance after the learning process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harvey, I., Di Paolo, E., Wood, R., Quinn, M.: Evolutionary robotics: A new scientific tool for studying cognition. Artificial Life 11(1-2), 79–98 (2005)

    Article  Google Scholar 

  2. Soula, H., Beslon, G., Favrel, J.: Evolving spiking neurons nets to control an animat. In: Pearson, D., Steel, N., Albrecht, R. (eds.) Proc. of ICANN-GA, Roanne, France, pp. 193–197 (2003)

    Google Scholar 

  3. di Paolo, E.: Evolving spike-timing-dependent plasticity for single-trial learning in robots. Phil. Trans. R. Soc. Lond. A. 361, 2299–2319 (2003)

    Article  Google Scholar 

  4. Floreano, D., Mattiusi, C.: Evolution of spiking neural controllers for autonomous vision-based robots. In: Gomi, T. (ed.) Evolutionnary Robotics. Springer, Heidelberg (2001)

    Google Scholar 

  5. Tuckwell, H.C.: Introduction to theoretical neurobiology: Non linear and stochastic theories, vol. 2. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  6. van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996)

    Article  Google Scholar 

  7. Nykamp, D.Q., Tranchina, D.: A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. Journal of Computational Neuroscience 8, 19–50 (2000)

    Article  MATH  Google Scholar 

  8. Meyer, C., van Vreeswijk, C.: Temporal correlations in stochastic networks of spiking neurons. Neural Computation 14(2), 369–404 (2002)

    Article  MATH  Google Scholar 

  9. Chow, C.C.: Phase-locking in weakly heterogeneous neural networks. Physica D. 118, 343–370 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gerstner, W.: Population dynamics of spiking neurons: fast transients, asynchronous states and locking. Neural Computation 12, 43–89 (2000)

    Article  Google Scholar 

  11. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience 8, 183–208 (2000)

    Article  MATH  Google Scholar 

  12. Amit, D.J., Brunel, N.: Model of global spontaneous activity and local structured delay activity during learning periods in the cerebral cortex. Cerebral Cortex 7, 237–252 (1997)

    Article  Google Scholar 

  13. Fusi, S., Mattia, M.: Collective behavior of networks with linear (vlsi) integrate-and-fire neurons. Neural Computation 11, 633–652 (1999)

    Article  Google Scholar 

  14. Mattia, M., del Giudice, P.: Population dynamics of interacting spiking neurons. Physical Review E 66(5) (2002)

    Google Scholar 

  15. Soula, H., Beslon, G., Mazet, O.: Spontaneous dynamics of assymmetric random recurrent spiking neural networks. Neural Computation 18(1) (2006)

    Google Scholar 

  16. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of Neuroscience 18(24), 10464–10472 (1998)

    Google Scholar 

  17. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature America 3, 1178–1182 (2000)

    Google Scholar 

  18. Hebb, D.O.: The Organization of Behavior. Wiley, Chichester (1949)

    Google Scholar 

  19. Rao, R.P.N., Sejnowski, T.J.: Spike-timing-dependent hebbian plasticity as temporal difference learning. Neural Computation 13, 2221–2237 (2001)

    Article  MATH  Google Scholar 

  20. Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-timing dependent plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soula, H., Beslon, G. (2006). Spike-Timing Dependent Plasticity Learning for Visual-Based Obstacles Avoidance. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_28

Download citation

  • DOI: https://doi.org/10.1007/11840541_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics