Skip to main content

Model-Based Diagnosis Through OBDD Compilation: A Complexity Analysis

  • Chapter
Book cover Reasoning, Action and Interaction in AI Theories and Systems

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4155))

Abstract

Since it is known that Model-Based Diagnosis may suffer from a potentially exponential size of the search space, a number of techniques have been proposed for alleviating the problem. Among them, some forms of compilation of the domain model have been investigated. In the present paper we address the problem of evaluating the complexity of diagnostic problem solving when Ordered Binary Decision Diagrams are adopted for representing the normal and faulty behavior of the system to be diagnosed and the solution space. In particular we analyze the case of the diagnosis of static models that exhibit a directionality from inputs to outputs (an important example of this type of models is the class of combinatorial digital circuits). We show that the problem of determining the set of all diagnoses and of determining the minimum cardinality diagnoses can be solved in time and space polynomial with respect to the size of the OBDD encoding the domain model. These results hold regardless of the degree of system observability including whether observations are precise or uncertain. We then analyze the complexity of refining the set of diagnoses by making additional observations and by using a test vector for troubleshooting the system. In particular we show that in the latter case we lose the formal guarantee that the diagnosis can be performed in polynomial time with respect to the size of the compiled domain model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloul, F., Markov, I., Sakallah, K.: Faster SAT and Smaller BDDs via Common Function Structure. In: Proc. Int. Conf. on Computer Aided Design (2001)

    Google Scholar 

  2. Aloul, F., Markov, I., Sakallah, K.: FORCE: a Fast and Easy-to-Implement Variable-Ordering Heuristic. In: Proc. Great Lakes Symposium on VLSI, pp. 116–119 (2003)

    Google Scholar 

  3. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in Nondeterministic Domains under Partial Observability via Symbolic Model Checking. In: Proc. IJCAI 2001, pp. 473–478 (2001)

    Google Scholar 

  4. Bollig, B., Wegener, I.: Improving the Variable Ordering of OBDDs is NP-complete. IEEE Transactions on Computers 45(9), 932–1002 (1994)

    Google Scholar 

  5. Brusoni, V., Console, L., Terenziani, P., Theseider Dupré, D.: A Spectrum of Definitions for Temporal Model-Based Diagnosis. Artificial Intelligence 102, 39–79 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bryant, R.: Symbolic boolean manipulation with Ordered Decision Diagrams. ACM Computing Surveys 24, 293–318 (1992)

    Article  Google Scholar 

  7. Bylander, T., Allemang, D., Tanner, M., Josephson, J.: The Computational Complexity of Abduction. Artificial Intelligence 49(1-3), 25–60 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cimatti, A., Pecheur, C., Cavada, R.: Formal Verification of Diagnosability via Symbolic Model Checking. In: Proc. IJCAI, pp. 363–369 (2003)

    Google Scholar 

  9. Console, L., Picardi, C., Ribaudo, M.: Process algebras for system diagnosis. Artificial Intelligence 142(1), 19–51 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Cordier, M.-O., Largouet, C.: Using model-checking techniques for diagnosing discrete-event systems. In: Proc. DX 2001, pp. 39–46 (2001)

    Google Scholar 

  11. Darwiche, A.: Model-based diagnosis using structured system descriptions. Journal of Artificial Intelligence Research 8, 165–222 (1998)

    MATH  MathSciNet  Google Scholar 

  12. de Kleer, J.: Using Crude Probability Estimates to Guide Diagnosis. Artificial Intelligence 45(3), 381–391 (1990)

    Article  Google Scholar 

  13. de Kleer, J., Mackworth, A., Reiter, R.: Characterizing Diagnoses and Systems. Artificial Intelligence 56(2-3), 197–222 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. ISCAS 85 Benchmark, http://www.visc.vt.edu/~mhsiao/iscas85.html

  15. Jensen, R.M., Veloso, M.M.: OBDD-based universal planning: Specifying and solving planning problems for synchronized agents in non-deterministic domains. In: Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence Today. LNCS, vol. 1600, pp. 213–248. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD - Foundations and Applications. Springer, Heidelberg (1998)

    Google Scholar 

  17. Pogliano, P., Riccardi, L.: Modeling Process Diagnostic Knowledge through Causal Networks. In: Gori, M., Soda, G. (eds.) AI*IA 1995. LNCS, vol. 992, pp. 323–334. Springer, Heidelberg (1995)

    Google Scholar 

  18. Schumann, A., Pencolé, Y., Thiébaux, S.: Diagnosis of Discrete-Event Systems using Binary Decision Diagrams. In: Proc. 15th Int. Work. on Principles of Diagnosis (DX 2004), pp. 197–202 (2004)

    Google Scholar 

  19. Sieling, D., Wegener, I.: NC-algorithms for Operations on Binary Decision Diagrams. Parallel Processing Letters 3(1), 3–12 (1993)

    Article  MathSciNet  Google Scholar 

  20. Struss, P., Rehfus, B., Brignolo, R., Cascio, F., Console, L., Dague, P., Dubois, P., Dressler, P., Millet, D.: Model-based Tools for the Integration of Design and Diagnosis into a Common Process - A Project Report. In: Proc. DX 2002 (2002)

    Google Scholar 

  21. Sztipanovits, J., Misra, A.: Diagnosis of discrete event systems using Ordered Binary Decision Diagrams. In: Proc. DX 1996 (1996)

    Google Scholar 

  22. Torasso, P., Torta, G.: Computing Minimum-Cardinality Diagnoses Using OBDDs. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 224–238. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Torasso, P., Torta, G.: Compact Diagnoses Representation in Diagnostic Problem Solving. Computational Intelligence 21(1), 27–68 (2005)

    Article  MathSciNet  Google Scholar 

  24. Torta, G., Torasso, P.: The Role of OBDDs in Controlling the Complexity of Model Based Diagnosis. In: Proc. Int. Work. on Principles of Diagnosis, pp. 9–14 (2004)

    Google Scholar 

  25. Torta, G., Torasso, P.: On the use of OBDDs in Model-Based Diagnosis: an Approach Based on the Partition of the Model. Knowledge-Based Systems 19 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Torasso, P., Torta, G. (2006). Model-Based Diagnosis Through OBDD Compilation: A Complexity Analysis. In: Stock, O., Schaerf, M. (eds) Reasoning, Action and Interaction in AI Theories and Systems. Lecture Notes in Computer Science(), vol 4155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11829263_16

Download citation

  • DOI: https://doi.org/10.1007/11829263_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37901-0

  • Online ISBN: 978-3-540-37902-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics