Abstract
Random walk kernels in conjunction with Support Vector Machines are powerful methods for error-tolerant graph matching. Because of their local definition, however, the applicability of random walk kernels strongly depends on the characteristics of the underlying graph representation. In this paper, we describe a simple extension to the standard random walk kernel based on graph edit distance. The idea is to include global matching information in the local similarity evaluation of random walks in graphs. The proposed extension allows us to improve the performance of the random walk kernel significantly. We present an experimental evaluation of our method on three difficult graph datasets.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18, 265–298 (2004)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Watkins, C.: Dynamic alignment kernels. In: Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 39–50. MIT Press, Cambridge (2000)
Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, University of California, Santa Cruz (1999)
Jain, B., Geibel, P., Wysotzki, F.: SVM learning with the Schur-Hadamard inner product for graphs. Neurocomputing 64, 93–105 (2005)
Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS, vol. 2777, pp. 129–143. Springer, Heidelberg (2003)
Borgwardt, K., Ong, C., Schönauer, S., Vishwanathan, S., Smola, A., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21, 47–56 (2005)
Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 13, 353–363 (1983)
Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)
Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)
Le Saux, B., Bunke, H.: Feature selection for graph-based image classifiers. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 147–154. Springer, Heidelberg (2005)
Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging and its application to diatom identification. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Neuhaus, M., Bunke, H. (2006). A Random Walk Kernel Derived from Graph Edit Distance. In: Yeung, DY., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds) Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2006. Lecture Notes in Computer Science, vol 4109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11815921_20
Download citation
DOI: https://doi.org/10.1007/11815921_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37236-3
Online ISBN: 978-3-540-37241-7
eBook Packages: Computer ScienceComputer Science (R0)