Skip to main content

Image Based Musculoskeletal Modeling Allows Personalized Biomechanical Analysis of Gait

  • Conference paper
Biomedical Simulation (ISBMS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4072))

Included in the following conference series:

Abstract

This paper describes a workflow, for building detailed, subject-specific musculoskeletal models from magnetic resonance (MR) images allowing enhanced biomechanical analysis of gait. . Bones are segmented semi-automatically using a hybrid approach while muscles attachments are retrieved automatically by atlas-based non-rigid registration followed by optional interactive correction using a user-friendly interface. Compared to previously proposed methods for MR based musculoskeletal modeling, integration of automated image processing procedures and problem-tailored visualization techniques result in a considerable reduction of the processing time, thus making MR-based musculoskeletal modeling practically feasible and more attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, R.E., Schneider, I., Hazlewood, M., Hillman, S., Robb, J.: Gait analysis alters decision-making in cerebral palsy. J. Pediatr. Orthop. 23(3), 292–295 (2003)

    Article  Google Scholar 

  2. White, S.C., Yack, H.J., Winter, D.A.: A three-dimensional musculoskeletal model for gait analysis. Journal of biomechanics 22(8-9), 885–893 (1989)

    Article  Google Scholar 

  3. Arnold, A., Liu, M.Q., Schwartz, M.H., Ounpuu, S., Delp, S.L.: The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait and Posture 23(3), 273–281 (2006)

    Article  Google Scholar 

  4. Duda, G.N., Brand, D., Freitag, S., Lierse, W., Schneider, E.: Variability of femoral muscle attachments. J. Biomech. 29(9), 1185–1190 (1996)

    Article  Google Scholar 

  5. Beals, R.K.: Developmental changes in the femur and the acetabulum in spastic paraplegia and diplegia. Dev. med. child. neurol. 11(3), 303–313 (1969)

    Article  Google Scholar 

  6. Arnold, A., Salinas, S., Delp, S.: Evaluation of a deformable musculoskeletal model: Application to planning muscle-tendon surgeries for crouch gait. An. Biomed. Eng. 29(1), 1–11 (2001)

    Article  Google Scholar 

  7. Arnold, A., Salinas, S., Asakawa, D., Delp, S.: Accuracy of muscle moment arms estimated from mri-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5(2), 108–119 (2000)

    Article  Google Scholar 

  8. Cohen, Z.A., McCarthy, D., Roglic, H., Henry, J., Rodkey, W., Steadman, J., Mow, V., Ateshian, G.: Computer-aided planning of patellofemoral joint OA surgery: Developing physical models from patient MRI. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 108–119. Springer, Heidelberg (1998)

    Google Scholar 

  9. Scheys, L., Jonkers, I., Schutyser, F., Pans, S., Spaepen, A., Suetens, P.: Image based methods to generate subject-specific musculoskeletal models for gait analysis using semi-automated segmentation. In: International Congress Series, vol. 1281, pp. 62–67 (2005)

    Google Scholar 

  10. Delp, S.L., Loan, J., et al.: A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25(1), 21–34 (1995)

    Article  Google Scholar 

  11. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modality image registration by maximization of mutual information. IEEE Trans. Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  12. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Medical Imaging 18(10), 885–896 (1999)

    Article  Google Scholar 

  13. Zoroofi, R., Nishii, T., Sato, Y., Sugano, N., Yoshikawa, H., Tamura, S.: Segmentation of avascular necrosis of the femoral head using 3-D MR images. Comput. Med. Imaging Graph. 25(6), 511–521 (2001)

    Article  Google Scholar 

  14. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3d surface construction algorithm. Computer Graphics Proceedings of the SIGGRAPH 21(4), 163–169 (1987)

    Article  Google Scholar 

  15. Vollmer, J., Mencl, R., Müller, H.: Improved laplacian smoothing of noisy surface meshes. In: Proc. 20th Conf. Eur. Assoc. for Computer Graphics, vol. 18(3) (1999)

    Google Scholar 

  16. Koskinen, S., Kujala, U.: Patellofemoral relationships and distal insertion of the vastus medialis muscle: a magnetic resonance imaging study in nonsymptomatic subjects and patients with patellar dislocation. Arthroscopy 8(4), 465–468 (1992)

    Article  Google Scholar 

  17. Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using free form deformations with a local rigidity constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 639–646. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE PAMI 14(2), 239–256 (1992)

    Google Scholar 

  19. Delp, S., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Medical Imaging 37(8), 757–767 (1990)

    Google Scholar 

  20. Cahill, D.R., Orland, M.J., Miller, G.M.: Atlas of cross-sectional anatomy. Lea and Febiger (1984)

    Google Scholar 

  21. Sethian, J.A.: Level set methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Kepple, T., Arnold, A., Stanhope, S., Siegel, K.: Assessment of a method to estimate muscle attachments from surface landmarks. J. Biomech. 27(3), 365–371 (1994)

    Article  Google Scholar 

  23. Scheys, L., Jonkers, I., Spaepen, A., Suetens, P.: Individualized musculoskeletal modeling based on MR images: Is it worth the effort? Gait and posture 22S, 20 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scheys, L., Jonkers, I., Loeckx, D., Maes, F., Spaepen, A., Suetens, P. (2006). Image Based Musculoskeletal Modeling Allows Personalized Biomechanical Analysis of Gait. In: Harders, M., Székely, G. (eds) Biomedical Simulation. ISBMS 2006. Lecture Notes in Computer Science, vol 4072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790273_7

Download citation

  • DOI: https://doi.org/10.1007/11790273_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36009-4

  • Online ISBN: 978-3-540-36010-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics