Skip to main content

Adaptive Point-Cloud Surface Interpretation

  • Conference paper
Advances in Computer Graphics (CGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Included in the following conference series:

  • 1630 Accesses

Abstract

We present a novel adaptive radial basis function network to reconstruct smooth closed surfaces and complete meshes from non-uniformly sampled noisy range data. The network is established using a heuristic learning strategy. Neurons can be inserted, removed or updated iteratively, adapting to the complexity and distribution of the underlying data. This flexibility is particularly suited to highly variable spatial frequencies, and is conducive to data compression with network representations. In addition, a greedy neighbourhood Extended Kalman Filter learning method is investigated, leading to a significant reduction of computational cost in the training process with desired prediction accuracy. Experimental results demonstrate the performance advantages of compact network representation for surface reconstruction from large amount of non-uniformly sampled incomplete point-clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Musavi, M., Ahmed, W., Chan, K., Faris, K., Hummels, D.: On the training of radial basis function classifiers. Neural Networks 5(4), 595–603 (1992)

    Article  Google Scholar 

  2. Chen, S., Billings, S., Grant, P.: Recursive hybrid algorithm for non-linear system identification using radial basis function networks. Int. J. Control 55, 1051–1070 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blinn, J.: A generalization of algebraic surface drawing. ACM Trans. Graph. 1(3), 235–256 (1982)

    Article  Google Scholar 

  4. Muraki, S.: Volumetric shape description of range data using blobby model. In: Proc. ACM SIGGRAPH (1991)

    Google Scholar 

  5. Lim, C., Turkiyyah, G., Ganter, M., Storti, D.: Implicit reconstruction of solids from cloud point sets. In: Proc. of the third ACM symposium on Solid modeling and applications, pp. 393–402 (1995)

    Google Scholar 

  6. Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. ACM Trans. Graph. 23(3), 878–887 (2004)

    Article  Google Scholar 

  7. Kojekine, N., Hagiwara, I., Savchenko, V.: Software tools using csrbf for processing scattered data. Computer & Graphics 27(2), 463–470 (2003)

    Article  Google Scholar 

  8. Turk, G., O’Brien, J.: Modelling with implicit surfaces that interpolate. ACM Trans. on Graphics 21(4), 855–873 (2002)

    Article  Google Scholar 

  9. Ohtake, Y., Belyaev, A., Seidel, H.: A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions. In: SMI 2003: Proc. Shape Modeling International, Washington, DC, USA, pp. 153–164. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  10. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003)

    Article  Google Scholar 

  11. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and representation of 3D objects with radial basis functions. In: ACM SIGGRAPH, pp. 67–76 (2001)

    Google Scholar 

  12. Ferrari, S., Maggioni, M., Borghese, N.A.: Multiscale approximation with hierarchical radial basis functions networks. IEEE Trans. on Neural Networks 15(1), 178–188 (2004)

    Article  Google Scholar 

  13. Bors, A., Gabbouj, M.: Minimal topology for a radial basis functions neural network for pattern classification. Digital Signal Processing 4(3), 173–188 (1994)

    Article  Google Scholar 

  14. Platt, J.: A resource-allocating network for function interpolation. Neural Comput. 3(2), 213–225 (1991)

    Article  MathSciNet  Google Scholar 

  15. Kadirkamanathan, V., Niranjan, M.: A function estimation approach to sequential learning with neural networks. Neural Computation 5(6), 954–975 (1993)

    Article  Google Scholar 

  16. Lu, Y., Sundararajan, N., Saratchandran, P.: A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 9(2), 461–478 (1997)

    Article  MATH  Google Scholar 

  17. Karayiannis, N.: Reformulated radial basis neural networks trained by gradient descent. IEEE Trans. on Neural Networks 10(3), 657–671 (1999)

    Article  Google Scholar 

  18. Simon, D.: Training radial basis neural networks with the extended Kalman filter. Neurocomputing 48, 455–475 (2002)

    Article  MATH  Google Scholar 

  19. Lu, Y., Sundararajan, N., Saratchandran, P.: Performance evaluation of a sequential minimal radial basis function (rbf) neural network learning algorithm. IEEE Trans. Neural Networks 9(2), 308–318 (1998)

    Article  Google Scholar 

  20. Haykin, S.: Kalman filtering and neural networks. Wiley Intercience, Chichester (2001)

    Book  Google Scholar 

  21. Range image database at Ohio SAMPL, http://sampl.ece.ohio-state.edu/data/3DDB/RID/minolta

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, Q., Li, B., Holstein, H. (2006). Adaptive Point-Cloud Surface Interpretation. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_37

Download citation

  • DOI: https://doi.org/10.1007/11784203_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics