Skip to main content

Application of the Multiple Image Radiography Method to Breast Imaging

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4046))

Abstract

The Multiple Image Radiography (MIR) method is new imaging modality that extends the capability of conventional absorption based radiography by adding the additional contrast mechanisms of x-ray refraction and ultra-small angle scatter. In order to design a clinically based MIR system, the MIR specific x-ray properties in breast tissue must be analyzed to determine which are diagnostically useful. Developing MIR as an imaging modality also requires developing new phantoms that incorporate x-ray refraction and ultra-small angle scatter in addition to traditional x-ray absorption. Three breast cancer specimens were imaged using MIR to demonstrate its MIR specific x-ray properties. An uncompressed anthropomorphic breast phantom with an imbedded low absorption contrast acrylic sphere was imaged to provide a physical model of how the unique properties of MIR can be utilized to improve upon conventional mammography and illustrate how these can be used to design a clinically useful imaging system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wernick, M.N., Wirjadi, O., Chapman, D., Zhong, Z., Oltulu, O., Yang, Y.Y.: Preliminary investigation of a multiple-image radiography method. In: IEEE International Symposium on Biomedical Imaging, pp. 129–132 (2002)

    Google Scholar 

  2. Wernick, M.N., Wirjadi, O., Chapman, D., Zhong, Z., Galatsanos, N.P., Yang, Y.Y., Brankov, J.G., Oltulu, O., Anastasio, M.A., Muehleman, C.: Multiple-image radiography. Physics in Medicine and Biology 48, 3875–3895 (2003)

    Article  Google Scholar 

  3. Ibison, M., Cheung, K.C., Siu, K., Hall, C.J., Lewis, R.A., Hufton, A., Wilkinson, S.J., Rogers, K.D., Round, A.: Diffraction-enhanced imaging at the UK synchrotron radiation source. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 548, 181–186 (2004)

    Article  Google Scholar 

  4. Menk, R.H., Rigon, L., Arfelli, F.: Diffraction-enhanced X-ray medical imaging at the ELETTRA synchrotron light source. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 548, 213–220 (2004)

    Article  Google Scholar 

  5. Chapman, D., Thomlinson, W., Johnston, R.E., Washburn, D., Pisano, E., Gmur, N., Zhong, Z., Menk, R., Arfelli, F., Sayers, D.: Diffraction enhanced x-ray imaging. Physics in Medicine and Biology 42, 2015–2025 (1997)

    Article  Google Scholar 

  6. Chapman, D., Pisano, E., Thomlinson, W., Zhong, Z., Johnson, R., Washburn, D., Sayers, D., Malinowska, K.: Medical Applications of Diffraction Enhanced Imaging. Breast Disease 10, 197–207 (1998)

    Google Scholar 

  7. Dilmanian, F.A., Wu, X.Y., Parsons, E.C., Ren, B., Button, T.M., Chapman, L.D., Huang, X., Marcovici, S., Menk, R., Nickoloff, E.L., Petersen, M.J., Roque, C.T., Thomlinson, W.C., Zhong, Z.: The tomography beamline at the National Synchrotron Light Source. Physica Medica 13, 13–18 (1997)

    Google Scholar 

  8. Kiss, M.Z., Sayers, D.E., Zhong, Z.: Measurement of image contrast using diffraction enhanced imaging. Physics in Medicine and Biology 48, 325–340 (2003)

    Article  Google Scholar 

  9. Pagot, E., Fiedler, S., Cloetens, P., Bravin, A., Coan, P., Fezzaa, K., Baruchel, J., Hartwig, J.: Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging. Physics in Medicine and Biology 50, 709–724 (2005)

    Article  Google Scholar 

  10. Bravin, A.: Exploiting the x-ray refraction contrast with an analyser: the state of the art. Journal of Physics D-Applied Physics 36, A24–A29 (2003)

    Article  Google Scholar 

  11. Lewis, R.A., Hall, C.J., Hufton, A.P., Arfelli, F., Evans, A.J., Evans, S.H.: X-ray diffraction-enhanced imaging (DEI). Radiology 221, 165 (2001)

    Google Scholar 

  12. Pisano, E.D., Johnston, R.E., Chapman, D., Geradts, J., Iacocca, M.V., Livasy, C.A., Washburn, D.B., Sayers, D.E., Zhong, Z., Kiss, M.Z., Thomlinson, W.C.: Human breast cancer specimens: Diffraction-enhance imaging with histologic correlation - Improved conspicuity of lesion detail compared with digital radiography. Radiology 214, 895–901 (2000)

    Google Scholar 

  13. Fiedler, S., Bravin, A., Keyrilainen, J., Fernandez, M., Suortti, P., Thomlinson, W., Tenhunen, M., Virkkunen, P., Karjalainen-Lindsberg, M.L.: Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology. Physics in Medicine and Biology 49, 175–188 (2004)

    Article  Google Scholar 

  14. Kiss, M.Z., Sayers, D.E., Zhong, Z., Parham, C., Pisano, E.D.: Improved image contrast of calcifications in breast tissue specimens using diffraction enhanced imaging. Physics in Medicine and Biology 49, 3427–3439 (2004)

    Article  Google Scholar 

  15. Keryiläinen, J., Fernández, M., Fiedler, S., Bravin, A., Karjalainen-Lindsberg, M., Virkkunen, P., Elo, E., Tenhunen, M., Suortti, P., Thomlinson, W.: Visualization of calcifications and thin collagen strands in human breast tumour specimens by the diffraction-enhanced imaging technique: a comparison with conventional mammography and histology. European Journal of Radiology 53, 226–237 (2005)

    Article  Google Scholar 

  16. Hasnah, M.O., Zhong, Z., Oltulu, O., Pisano, E., Johnston, R.E., Sayers, D., Thomlinson, W., Chapman, D.: Diffraction enhanced imaging contrast mechanisms in breast cancer specimens. Medical Physics 29, 2216–2221 (2002)

    Article  Google Scholar 

  17. Hasnah, M.O., Parham, C., Pisano, E.D., Zhong, Z., Oltulu, O., Chapman, D.: Mass density images from the diffraction enhanced imaging technique. Medical Physics 32, 549–552 (2005)

    Article  Google Scholar 

  18. Zhong, Z., Thomlinson, W., Chapman, D., Sayers, D.: Implementation of diffraction-enhanced imaging experiments: at the NSLS and APS. Nuclear Instruments and Methods in Physics Research A 450, 556–567 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parham, C. et al. (2006). Application of the Multiple Image Radiography Method to Breast Imaging. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds) Digital Mammography. IWDM 2006. Lecture Notes in Computer Science, vol 4046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783237_40

Download citation

  • DOI: https://doi.org/10.1007/11783237_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35625-7

  • Online ISBN: 978-3-540-35627-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics