Skip to main content

On the Discontinuous Galerkin Method for Friedrichs Systems in Graph Spaces

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3743))

Abstract

Solutions of Friedrichs systems are in general not of Sobolev regularity and may possess discontinuities along the characteristics of the differential operator. We state a setting in which the well-posedness of Friedrichs systems on polyhedral domains is ensured, while still allowing changes in the inertial type of the boundary. In this framework the discontinuous Galerkin method converges in the energy norm under h- and p-refinement to the exact solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedrichs, K.O.: Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11, 333–418 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dautray, R., Lions, J.L.: Mathematical analysis and numerical methods for science and technology, vol. 3. Springer, Berlin (1990)

    Google Scholar 

  3. Moyer, R.D.: On the nonidentity of weak and strong extensions of differential operators. Proc. Amer. Math. Soc. 19, 487–488 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lax, P.D., Phillips, R.S.: Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13, 427–455 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sarason, L.: On weak and strong solutions of boundary value problems. Comm. Pure Appl. Math. 15, 237–288 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  6. Phillips, R.S., Sarason, L.: Singular symmetric positive first order differential operators. J. Math. Mech. 15, 235–271 (1966)

    MATH  MathSciNet  Google Scholar 

  7. Rauch, J.: Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Amer. Math. Soc. 291, 167–187 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rauch, J.: Boundary value problems with nonuniformly characteristic boundary. J. Math. Pures Appl. 73, 347–353 (1994)

    MATH  MathSciNet  Google Scholar 

  9. Secchi, P.: A symmetric positive system with nonuniformly characteristic boundary. Differential Integral Equations 11, 605–621 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Secchi, P.: Full regularity of solutions to a nonuniformly characteristic boundary value problem for symmetric positive systems. Adv. Math. Sci. Appl. 10, 39–55 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: Proceedings of the 1973 Conference on Mathematical Models and Computational Techniques of Nuclear Systems, Fifth biennial topical meeting of the mathematical and computational division of the American Nuclear Society, vol. 1(1), pp. 10–31 (1973)

    Google Scholar 

  12. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479 (1973)

    Google Scholar 

  13. LeSaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), pp. 89–123. Academic Press, New York. Publication No. 33(1974)

    Google Scholar 

  14. Johnson, C., Pitkäranta, J.: Convergence of a fully discrete scheme for twodimensional neutron transport. SIAM J. Numer. Anal. 20, 951–966 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45, 285–312 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bey, K.S., Oden, J.T.: hp-version discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Methods Appl. Mech. Engrg. 133, 259–286 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Houston, P., Schwab, C., Süli, E.: Stabilized hp- finite element methods for firstorder hyperbolic problems. SIAM J. Numer. Anal. 37, 1618–1643 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Houston, P., Süli, E.: hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput. 23, 1226–1252 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jensen, M.: Discontinuous Galerkin methods for Friedrichs systems with irregular solutions. PhD thesis, Oxford University (2004), http://web.comlab.ox.ac.uk/oucl/research/na/theses.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jensen, M. (2006). On the Discontinuous Galerkin Method for Friedrichs Systems in Graph Spaces. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_9

Download citation

  • DOI: https://doi.org/10.1007/11666806_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31994-8

  • Online ISBN: 978-3-540-31995-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics