Skip to main content

A Twelve-State Optimum-Time Synchronization Algorithm for Two-Dimensional Rectangular Cellular Arrays

  • Conference paper
Unconventional Computation (UC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3699))

Included in the following conference series:

Abstract

The firing squad synchronization problem has been studied extensively for more than 40 years [1-18]. The present authors are involved in research on firing squad synchronization algorithms on two-dimensional (2-D) rectangular cellular arrays. Several synchronization algorithms on 2-D arrays have been proposed, including Beyer [2], Grasselli [3], Kobayashi [4], Shinahr [10], Szwerinski [12] and Umeo et al. [13, 15]. To date, the smallest number of cell states for which an optimum-time synchronization algorithm has been developed is 14 for rectangular array, achieved by Umeo et al. [15]. In the present paper, we propose a new optimum-time synchronization algorithm that can synchronize any 2-D m × n rectangular arrays in m + n + max(m, n) –3 steps. We progressively reduce the number of internal states of each cellular automaton on rectangular arrays, achieving twelve states. This is the smallest number of states reported to date for synchronizing rectangular arrays in optimum-step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control 10, 22–42 (1967)

    Article  Google Scholar 

  2. Beyer, W.T.: Recognition of topological invariants by iterative arrays. Ph.D. Thesis, MIT, p. 144 (1969)

    Google Scholar 

  3. Grasselli, A.: Synchronization of cellular arrays: The firing squad problem in two dimensions. Information and Control 28, 113–124 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kobayashi, K.: The firing squad synchronization problem for two-dimensional arrays. Information and Control 34, 177–197 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theoretical Computer Science 50, 183–238 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Minsky, M.: Computation: Finite and infinite machines, pp. 28–29. Prentice Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  7. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading (1964)

    Google Scholar 

  8. Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Information and Control 12, 212–220 (1968)

    Article  MATH  Google Scholar 

  9. Nguyen, H.B., Hamacher, V.C.: Pattern synchronization in two-dimensional cellular space. Information and Control 26, 12–23 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shinahr, I.: Two- and three-dimensional firing squad synchronization problems. Information and Control 24, 163–180 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Settle, A., Simon, J.: Smaller solutions for the firing squad. Theoretical Computer Science 276, 83–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Szwerinski, H.: Time-optimum solution of the firing-squad-synchronization-problem for n-dimensional rectangles with the general at an arbitrary position. Theoretical Computer Science 19, 305–320 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Umeo, H., Maeda, M., Fujiwara, N.: An efficient mapping scheme for embedding any one-dimensional firing squad synchronization algorithm onto two-dimensional arrays. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 69–81. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Umeo, H., Hisaoka, M., Michisaka, K., Nishioka, K., Maeda, M.: Some new generalized synchronization algorithms and their implementations for large scale cellular automata. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 276–286. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Umeo, H., Hisaoka, M., Teraoka, M., Maeda, M.: Several new generalized linear- and optimum-time synchronization algorithms for two-dimensional rectangular arrays. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 223–232. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Umeo, H., Hisaoka, M., Sogabe, T.: A survey on optimum-time firing squad synchronization algorithms for one-dimensional cellular automata. International Journal of Unconventional Computing 1(3), 1–24 (2005)

    Google Scholar 

  17. Varshavsky, V.I., Marakhovsky, V.B., Peschansky, V.A.: Synchronization of interacting automata. Mathematical Systems Theory 4(3), 212–230 (1970)

    Article  MathSciNet  Google Scholar 

  18. Waksman, A.: An optimum solution to the firing squad synchronization problem. Information and Control 9, 66–78 (1966)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Umeo, H., Hisaoka, M., Akiguchi, S. (2005). A Twelve-State Optimum-Time Synchronization Algorithm for Two-Dimensional Rectangular Cellular Arrays. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds) Unconventional Computation. UC 2005. Lecture Notes in Computer Science, vol 3699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560319_20

Download citation

  • DOI: https://doi.org/10.1007/11560319_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29100-8

  • Online ISBN: 978-3-540-32022-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics