Skip to main content

Biological Development of Cell Patterns: Characterizing the Space of Cell Chemistry Genetic Regulatory Networks

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

Genetic regulatory networks (GRNs) control gene expression and are responsible for establishing the regular cellular patterns that constitute an organism. This paper introduces a model of biological development that generates cellular patterns via chemical interactions. GRNs for protein expression are generated and evaluated for their effectiveness in constructing 2D patterns of cells such as borders, patches, and mosaics. Three types of searches were performed: (a) a Monte Carlo search of the GRN space using a utility function based on spatial interestingness; (b) a hill climbing search to identify GRNs that solve specific pattern problems; (c) a search for combinatorial codes that solve difficult target patterns by running multiple disjoint GRNs in parallel. We show that simple biologically realistic GRNs can construct many complex cellular patterns. Our model provides an avenue to explore the evolution of complex GRNs that drive development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanley, K., Mikkulainen, R.: A Taxonomy For Artificial Embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  2. Lindenmayer, A.: Mathematical Models For Cellular Interaction In Development: Parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)

    Article  Google Scholar 

  3. Gruau, F.: Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm. Doctoral dissertation, Ecole Normale Superieure de Lyon, France (1994)

    Google Scholar 

  4. Gruau, F., Whitley, D., Pyeatt, L.: A Comparison Between Cellular Encoding And Direct Encoding For Genetic Neural Networks. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 81–89. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Hogeweg, P.: Computing an organism: on the interface between informatic and dynamic processes. Biosystems 64, 97–109 (2002)

    Article  Google Scholar 

  6. Astor, J.S., Chris Adami, C.: A Developmental Model for the Evolution of Artificial Neural Networks. Journal of Artificial Life 6(3), 189–218 (2000)

    Article  Google Scholar 

  7. Turing, A.: The Chemical Basis Of Morphogenesis. Philosophical Transactions of the Royal Society B 237, 37–72 (1952)

    Article  Google Scholar 

  8. Fleischer, K., Barr, A.H.: A Simulation Testbed For The Study Of Multicellular Development: The Multiple Mechanisms Of Morphogenesis. In: Langton, C.G. (ed.) Artificial life III, pp. 389–416. Addison-Wesley, Reading (1993)

    Google Scholar 

  9. Mjolsness, E., Sharp, D.H., Reinitz, J.: A Connectionist Model Of Development. Journal of Theoretical Biology 152, 429–453 (1991)

    Article  Google Scholar 

  10. Kaneko, K., Furusawa, C.: Emergence Of Multicellular Organisms With Dynamic Differentation And Spatial Pattern. Artificial Life 4, 77–93 (1998)

    Google Scholar 

  11. Federici, D.: Using Embryonic Stages To Increase The Evolvability Of Development. In: Proceedings of WORLDS Workshop on Regeneration and Learning in Developmental Systems (hosted by GECCO) (2004)

    Google Scholar 

  12. Roggen, D., Federici, D.: Multi-Cellular Development: Is There Scalability And Robustness To Gain? In: Proceedings of PPSN VIII 2004 The 8th International Conference on Parallel Problem Solving from Nature, pp. 391–400 (2004)

    Google Scholar 

  13. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The Segment Polarity Network is a Robust Developmental Module. Nature 406, 188–192 (2000)

    Article  Google Scholar 

  14. Hilderman, R.J., Hamilton, H.J.: Heuristics For Ranking the Interestingness Of Discovered Knowledge. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 204–210. Springer, Heidelberg (1999)

    Google Scholar 

  15. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.: CompuCell, a Multi-Model Framework For Simulation Of Morphogenesis. Bioinformatics 20, 1129–1137 (2004)

    Article  Google Scholar 

  16. Bongard, J.C.: Evolving Modular Genetic Regulatory Networks. In: Proceedings of the IEEE 2002 Congress on Evolutionary Computation (CEC2002), pp. 1872–1877. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  17. Taylor, T.: A Genetic Regulatory Network-Inspired Real-Time Controller For a Group Of Underwater Robots. In: Groen, F., Amato, N., Bonarini, A., Yoshida, E., Kröse, B. (eds.) Intelligent Autonomous Systems 8 (Proceedings of IAS8), pp. 403–412. IOS Press, Amsterdam (2004)

    Google Scholar 

  18. Lawrence, P.A.: The Making Of a Fly. Blackwell Scientific Publications, Oxford (1992)

    Google Scholar 

  19. Shvartsman, S.Y., Muratov, C.B., Lauffenburger, D.A.: Modeling And Computational Analysis Of EGF Receptor-Mediated Cell Communication In Drosophila Oogenesis. Development 129, 2577–2589 (2002)

    Google Scholar 

  20. Collier, J.R., Monk, N.A.M., Maini, P.K., Lewis, J.H.: Pattern Formation By Lateral Inhibition With Feedback: A Mathematical model Of Delta-Notch Intercellular Signalling. J. Theor. Biol. 183, 429–446 (1996)

    Article  Google Scholar 

  21. Mochizuki, A.: Pattern Formation Of the Cone Mosaic In the Zebrafish Retina: A Cell Rearrangement Model. J. Theor. Biol. 215, 345–361 (2002)

    Article  Google Scholar 

  22. Skeath, J.B.: At the Nexus Between Pattern Formation And Cell-Type Specification: the Generation Of Individual Neuroblast Fates In The Drosophila Embryonic Central Nervous System. Bioessays 212, 922–931 (1999)

    Article  Google Scholar 

  23. Jessell, T.M.: Neuronal Specification In the Spinal Cord: Inductive Signals And Transcriptional Codes. Nat. Rev. Genet. 1, 20–29 (2000)

    Article  Google Scholar 

  24. Cook, J.E., Chalupa, L.M.: Retinal Mosaics: New Insights Into An Old Concept. TINS 23, 26–35 (2000)

    Google Scholar 

  25. Atabef, M., Clarke, J.D.W., Ticle, C.: Dorso-Ventral Ectodermal Compartments and the Origin of Apical Ectodermal Ridge in Developing Chick Limb. Development 124, 4547–4556 (1997)

    Google Scholar 

  26. Gossler, A., de Angelis, M.H.: Somitogenesis. Curr. Top. Dev. Biol. 38, 225–287 (1998)

    Article  Google Scholar 

  27. http://www.cs.usu.edu/~flann/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flann, N., Hu, J., Bansal, M., Patel, V., Podgorski, G. (2005). Biological Development of Cell Patterns: Characterizing the Space of Cell Chemistry Genetic Regulatory Networks. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_7

Download citation

  • DOI: https://doi.org/10.1007/11553090_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics