Skip to main content

Emergence of Oriented Cell Assemblies Associated with Spike-Timing-Dependent Plasticity

  • Conference paper
Book cover Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

We studied the emergence of cell assemblies out of a locally connected random network of 10,000 integrate-and-fire units distributed on a 100×100 2D lattice. The network was composed of 80% excitatory and 20% inhibitory units with balanced excitatory/inhibitory synaptic weights. Excitatory–excitatory synapses were modified according to a spike-timing-dependent synaptic plasticity (STDP) rule associated with synaptic pruning. In presence of a stimulus and with independent random background noise (5 spikes/s), we observed that after 5·105 ms of simulated time, about 8% of the exc–exc connections remained active and were reinforced with respect to the initial strength. The projections that remained active after pruning tended to be oriented following a feed-forward converging–diverging pattern. This result suggests that topologies compatible with synfire chains may appear during unsupervised pruning processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., Zecevic, N., Goldman-Rakic, P.S.: Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986)

    Article  Google Scholar 

  2. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Google Scholar 

  3. Karmarkar, U.R., Buonomano, D.V.: A model of spike-timing dependent plasticity: one or two coincidence detectors? J. Neurophysiol. 88, 507–513 (2002)

    Google Scholar 

  4. Chechik, G., Meilijson, I., Ruppin, E.: Neuronal Regulation: A Mechanism for Synaptic Pruning During Brain Maturation. Neural Computation 11, 2061–2080 (1999)

    Article  Google Scholar 

  5. Song, S., Abbott, L.F.: Cortical Development and Remapping through Spike Timing-Dependent Plasticity. Neuron 32, 339–350 (2001)

    Article  Google Scholar 

  6. Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Rosenberg, J., Moreno, J.-M., Villa, A.E.P.: Spiking Neural Networks for Reconfigurable POEtic Tissue. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 165–173. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., Villa, A.E.P.: Dynamics of Pruning in Simulated Large-Scale Spiking Neural Networks. Biosystems 79, 11–20 (2005)

    Article  Google Scholar 

  8. Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  9. Tetzlaff, T., Morrison, A., Geisel, T., Diesmann, M.: Consequences of realistic netowrk size on the stability of embedded synfire chains. Neurocomputing 58-60, 117–121 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M., Villa, A.E.P. (2005). Emergence of Oriented Cell Assemblies Associated with Spike-Timing-Dependent Plasticity. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_21

Download citation

  • DOI: https://doi.org/10.1007/11550822_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics