Skip to main content

Tight Approximability Results for the Maximum Solution Equation Problem over Z p

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

Abstract

In the maximum solution equation problem a collection of equations are given over some algebraic structure. The objective is to find an assignment to the variables in the equations such that all equations are satisfied and the sum of the variables is maximised. We give tight approximability results for the maximum solution equation problem when the equations are given over groups of the form Z p , where p is prime. We also prove that the weighted and unweighted versions of this problem have equal approximability thresholds. Furthermore, we show that the problem is equally hard to solve even if each equation is restricted to contain at most three variables and solvable in polynomial time if the equations are restricted to contain at most two variables. All of our results also hold for a generalised version of maximum solution equation where the elements of the group are mapped arbitrarily to non-negative integers in the objective function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S.: Probabilistic checking of proofs and hardness of approximation problems. PhD thesis (1995)

    Google Scholar 

  2. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2), 317–331 (1997), doi:10.1006/jcss.1997.1472

    Article  MATH  MathSciNet  Google Scholar 

  3. Bovet, D.P., Crescenzi, P.: Introduction to the theory of complexity. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  4. Bruck, J., Naor, M.: The hardness of decoding linear codes with preprocessing. IEEE Transactions on Information Theory 36(2), 381–385 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crescenzi, P., Silvestri, R., Trevisan, L.: To weight or not to weight: Where is the question? In: ISTCS 1996: Proceedings of the 4th Israeli Symposium on Theory of Computing and Systems, pp. 68–77. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  6. Engebretsen, L., Holmerin, J., Russell, A.: Inapproximability results for equations over finite groups. Theor. Comput. Sci. 312(1), 17–45 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feige, U., Micciancio, D.: The inapproximability of lattice and coding problems with preprocessing. J. Comput. Syst. Sci. 69(1), 45–67 (2004), doi:10.1016/j.jcss.2004.01.002

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldmann, M., Russell, A.: The complexity of solving equations over finite groups. Inf. Comput. 178(1), 253–262 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Hastad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2000)

    Article  MathSciNet  Google Scholar 

  11. Klíma, O., Tesson, P., Thérien, D.: Dichotomies in the complexity of solving systems of equations over finite semigroups. Technical Report TR04-091, Electronic Colloq. on Computational Complexity (2004)

    Google Scholar 

  12. Larose, B., Zadori, L.: Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. (Submitted for publication)

    Google Scholar 

  13. Moore, C., Tesson, P., Thérien, D.: Satisfiability of systems of equations over finite monoids. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 537–547. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Nordh, G.: The complexity of equivalence and isomorphism of systems of equations over finite groups. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 380–391. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Nordh, G., Jonsson, P.: The complexity of counting solutions to systems of equations over finite semigroups. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 370–379. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Pascal Tesson. Computational Complexity Questions Related to Finite Monoids and Semigroups. PhD thesis (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuivinen, F. (2005). Tight Approximability Results for the Maximum Solution Equation Problem over Z p . In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_54

Download citation

  • DOI: https://doi.org/10.1007/11549345_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics