Skip to main content

Local Bagging of Decision Stumps

  • Conference paper
Book cover Innovations in Applied Artificial Intelligence (IEA/AIE 2005)

Abstract

Local methods have significant advantages when the probability measure defined on the space of symbolic objects for each class is very complex, but can still be described by a collection of less complex local approximations. We propose a technique of local bagging of decision stumps. We performed a comparison with other well known combining methods using the same base learner, on standard benchmark datasets and the accuracy of the proposed technique was greater in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aha, D.: Lazy Learning. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  2. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning for control. Artificial Intelligence Review 11, 75–113 (1997)

    Article  Google Scholar 

  3. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artificial Intelligence Review 11, 11–73 (1997)

    Article  Google Scholar 

  4. Blake, C., Merz, C.: UCI Repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/mlearn/MLRepository.html

  5. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning 36, 525–536 (1999)

    Article  Google Scholar 

  6. Brighton, H., Mellish, C.: Advances in Instance Selection for Instance-Based Learning Algorithms. Data Mining and Knowledge Discovery 6, 153–172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bottou, L., Vapnik, V.: Local learning algorithm. Neural Computation 4(6), 888–901 (1992)

    Article  Google Scholar 

  8. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Cohen, S., Intrator, N.: Automatic model selection in a hybrid perceptron/Radial network. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 349–358. Springer, Heidelberg (2001)

    Google Scholar 

  10. John, C., Trigg, L.: An Instance- based Learner Using an Entropic Distance Measure. In: Proc. of the 12th International Conference on ML, pp. 108–114 (1995)

    Google Scholar 

  11. Frank, E., Hall, M., Pfahringer, B.: Locally weighted naive Bayes. In: Proc. of the 19th Conference on Uncertainty in Artificial Intelligence, Acapulco, Mexico. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  12. Freund, Y., Schapire, R.: Experiments with a New Boosting Algorithm. In: Proc. ICML 1996, pp. 148–156 (1996)

    Google Scholar 

  13. Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. The Annals of Statistics 28, 337–374 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Iba, W., Langley, P.: Induction of one-level decision trees. In: Proc. of the Ninth International Machine Learning Conference. Morgan Kaufmann, Aberdeen (1992)

    Google Scholar 

  15. Kleinberg, E.M.: A mathematically rigorous foundation for supervised learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 67–76. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Nadeau, C., Bengio, Y.: Inference for the Generalization Error. Machine Learning 52, 239–281 (2003)

    Article  MATH  Google Scholar 

  17. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  18. Wilson, D., Martinez, T.: Reduction Techniques for Instance-Based Learning Algorithms. Machine Learning 38, 257–286 (2000)

    Article  MATH  Google Scholar 

  19. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Mateo (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotsiantis, S.B., Tsekouras, G.E., Pintelas, P.E. (2005). Local Bagging of Decision Stumps. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_57

Download citation

  • DOI: https://doi.org/10.1007/11504894_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26551-1

  • Online ISBN: 978-3-540-31893-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics