Skip to main content

Interacting Slow and Fast Dynamics in Precise Spiking-Bursting Neurons

  • Conference paper
Book cover Mechanisms, Symbols, and Models Underlying Cognition (IWINAC 2005)

Abstract

We have explored the role of the interaction of slow and fast intracellular dynamics in generating precise spiking-bursting activity in a model of the heartbeat central pattern generator of the leech. In particular we study the effect of calcium-dependent currents on the neural signatures generated in the circuit. These neural signatures are cell-specific interspike intervals in the spiking-bursting activity of each neuron. Our results show that the slow dynamics of intracelullar calcium concentration can regulate the precision and shape of the neural signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berridge, M.J.: Neuronal calcium signaling. Neuron 21, 13–26 (1998)

    Article  Google Scholar 

  2. Varona, P., Torres, J.J., Abarbanel, H.D.I., Rabinovich, M.I., Elson, R.C.: Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis. Biological Cybernetics 84(2), 91–101 (2001a)

    Article  Google Scholar 

  3. Varona, P., Torres, J.J., Huerta, R., Abarbanel, H.D.I., Rabinovich, M.I.: Regularization mechanisms of spiking-bursting neurons. Neural Networks 14, 865–875 (2001b)

    Article  Google Scholar 

  4. Hartline, D.K., Maynard, D.M.: Motor patterns in the stomatogastric ganglion of the lobster panulirus argus. J. Exp. Biol. 62(2), 405–420 (1976)

    Google Scholar 

  5. Russell, D.F., Hartline, D.K.: Bursting neural networks: a reexamination. Science 200(4340), 453–456 (1978)

    Article  Google Scholar 

  6. Marder, E., Calabrese, R.L.: Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996)

    Google Scholar 

  7. Selverston, A.I., Elson, R.C., Rabinovich, M.I., Huerta, R., Abarbanel, H.D.I.: Basic principles for generating motor output in the stomatogastric ganglion. Ann. N.Y. Acad. Sci. 860(1), 35–50 (1998)

    Article  Google Scholar 

  8. Szucs, A., Pinto, R.D., Rabinovich, M.I., Abarbanel, H.D.I., Selverston, A.I.: Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. J. Neurophysiol. 89, 1363–1377 (2003)

    Article  Google Scholar 

  9. Latorre, R., Rodríguez, F.B., Varona, P.: Characterization of triphasic rhythms in central pattern generators (I): Interspike interval analysis. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 160–166. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Rodríguez, F.B., Latorre, R., Varona, P.: Characterization of triphasic rhythms in central pattern generators (II): Burst information analysis. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 167–173. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Latorre, R., Rodriguez, F.B., Varona, P.: Effect of individual spiking activity on rhythm generation of central pattern generators. Neurocomputing 58-60, 535–540 (2004)

    Article  Google Scholar 

  12. Peterson, E.L.: Generation and coordination of heartbeat timing oscillation in the medicinal leech. I. Oscillation in isolated ganglia. J. Neurophysiol. 49, 611–626 (1983a)

    Google Scholar 

  13. Peterson, E.L.: Generation and coordination of heartbeat timing oscillation in the medicinal leech. II. Intersegmental coordination. J. Neurophysiol. 49, 627–638 (1983b)

    Google Scholar 

  14. Hill, A.A., Masino, M.A., Calabrese, R.L.: Model of intersegmental coordination in the leech heartbeat neuronal network. J. Neurophysiol. 87(3), 1586–1602 (2002)

    Google Scholar 

  15. Jezzini, S.H., Hill, A.A.V., Kuzyk, P., Calabrese, R.L.: Detailed model of intersegmental coordination in the timing network of the leech heartbeat central pattern generator. J. Neurophysiol. 91, 958–977 (2004)

    Article  Google Scholar 

  16. Hill, A.A.V., Lu, J., Masino, M.A., Olsen, O.H., Calabrese, R.L.: A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of Computational Neuroscience 10, 281–302 (2001)

    Article  Google Scholar 

  17. Angstadt, J.D., Calabrese, R.L.: A hyperpolarization-activated inward current in heart interneurons of the medicinal leech. J. Neurosci. 9, 2846–2857 (1989)

    Google Scholar 

  18. Angstadt, J.D., Calabrese, R.L.: Calcium currents and graded synaptic transmission between heart interneurons of the leech. J. Neurosci. 11, 746–759 (1991)

    Google Scholar 

  19. Olsen, O.H., Calabrese, R.L.: Activation of intrinsic and synaptic currents in leech heart interneurons by realistic waveforms. J. Neurosci. 16, 4958–4970 (1996)

    Google Scholar 

  20. Opdyke, C.A., Calabrese, R.L.: A persistent sodium current contributes to oscillatory activity in heart interneurons of the medicinal leech. J. Comp. Physiol. A 175, 781–789 (1994)

    Article  Google Scholar 

  21. Ivanov, A.I., Calabrese, R.L.: Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission. J. Neurosci. 20(13), 4930–4943 (2000)

    Google Scholar 

  22. Ivanov, A.I., Calabrese, R.L.: Modulation of spike-mediated synaptic transmission by presynaptic background Ca2+ in leech heart interneurons. J. Neurosci. 23(4), 1206–1218 (2003)

    Google Scholar 

  23. Beck, A., Lohr, C., Nett, W., Deitmer, J.W.: Bursting activity in leech Retzius neurons induced by low external chloride. Pflugers Arch. 442(2), 263–272 (2001)

    Article  Google Scholar 

  24. Wessel, R., Kristan Jr., W.B, KleinFeld, D.: Dendritic Ca(2+)-activated K(+) conductances regulate electrical signal propagation in an invertebrate neuron. J. Neurosci. 19(19), 8319–8326 (1999)

    Google Scholar 

  25. Johansen, J., Yang, J., Kleinhaus, A.L.: Voltage-clamp analysis of the ionic conductances in a leech neuron with a purely calcium-dependent action potential. J. Neurophysiol. 58(6), 1468–1484 (1987)

    Google Scholar 

  26. Calabrese, R.L., Nadim, F., Olsen, O.H.: Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns. J. Neurobiol. 27, 390–402 (1995)

    Article  Google Scholar 

  27. Nadim, F., Calabrese, R.L.: A slow outward current activated by FMRFamide in heart interneurons of the medicinal leech. J. Neurosci. 17, 4461–4472 (1997)

    Google Scholar 

  28. Cymbalyuk, G.S., Gaudry, Q., Masino, M.A., Calabrese, R.L.: Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J. Neurosci. 22(24), 10580–10592 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baroni, F., Torres, J.J., Varona, P. (2005). Interacting Slow and Fast Dynamics in Precise Spiking-Bursting Neurons. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_11

Download citation

  • DOI: https://doi.org/10.1007/11499220_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26298-5

  • Online ISBN: 978-3-540-31672-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics