Skip to main content

Data Protection Based on Physical Separation: Concepts and Application Scenarios

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3483))

Abstract

Data protection is an increasingly important issue in today’s communication networks. Traditional solutions for protecting data when transferred over a network are almost exclusively based on cryptography. As a complement, we propose the use of multiple physically separate paths to accomplish data protection. A general concept for providing physical separation of data streams together with a threat model is presented. The main target is delay-sensitive applications such as telephony signaling, live TV, and radio broadcasts that require only lightweight security. The threat considered is malicious interception of network transfers through so-called eavesdropping attacks. Application scenarios and techniques to provide physically separate paths are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. In: Proceedings of the 18th ACM Symposium on Operating System Principles (SOSP 2001), pp. 131–145. Chateau Lake Louise, Canada (October 2001)

    Google Scholar 

  2. Apostolopoulos, G., Peris, V., Saha, D.: Transport layer security: How much does it really cost? In: Proceedings of the Conference on Computer Communications (IEEE INFOCOM), New York, USA, March 1999, vol. 2, pp. 717–725 (1999)

    Google Scholar 

  3. Burke, J., McDonald, J., Austin, T.: Architectural support for fast symmetric cryptography. ACM SIGOPS Operating Systems Review 34(5), 178–189 (2000)

    Article  Google Scholar 

  4. Chapman, D.B., Zwicky, E.D.: Building Internet Firewalls. O’Reilly & Associates, Sebastopol (1995)

    Google Scholar 

  5. Deswarte, Y., Blain, L., Fabre, J.C., Pons, J.M.: Security. In: Powell, D. (ed.) Delta-4: A Generic Architecture for Dependable Distributed Computing, ch. 13, pp. 329–339. Springer, Heidelberg (1991)

    Google Scholar 

  6. Dierks, T., Allen, C.: RFC 2246: The TLS protocol version 1.0 (January 1999)

    Google Scholar 

  7. Radware: Peer Director, http://www.radware.com/content/products/pd (January 2, 2005)

  8. El Al, A.A., Saadawi, T., Myung, L.: LS-SCTP: A bandwidth aggregation technique for stream control transmission protocol. Computer Communications 27(10), 1012–1024 (2004)

    Article  Google Scholar 

  9. Frier, A., Karlton, P., Kocher, P.: The SSL 3.0 protocol. Netscape Communication Corporation (November 1996)

    Google Scholar 

  10. Tahilramani Kaur, H., Kalyanaraman, S., Weiss, A., Kanwar, S., Gandhi, A.: BANANAS: An evolutionary framework for explicit and multipath routing in the Internet. In: Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture (FDNA 2003), Karlsruhe, Germany, pp. 277–288 (2003)

    Google Scholar 

  11. Kent, S., Atkinson, R.: RFC 2401: Security architecture for the Internet protocol (November 1998)

    Google Scholar 

  12. Lindskog, S., Strandbergh, J., Hackman, M., Jonsson, E.: A content-independent scalable encryption model. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 821–830. Springer, Heidelberg (2004)

    Google Scholar 

  13. Miltchev, S., Ioannidis, S., Keromytis, A.D.: A study of the relative costs of network security protocols. In: Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference, Monterey, California, USA, June 2002, pp. 41–48 (2002)

    Google Scholar 

  14. Nakao, A., Peterson, L., Bavier, A.: A routing underlay for overlay networks. In: Proceedings of the ACM SIGCOMM 2003, Karlsruhe, Germany, August 2003, pp. 11–18 (2003)

    Google Scholar 

  15. Ong, L., Rytina, I., Garcia, M., Schwarzbauer, H., Coene, L., Lin, H., Juhasz, I., Holdrege, M., Sharp, C.: RFC 2719: Framework architecture for signaling transport (October 1999)

    Google Scholar 

  16. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing disruptive technology into the Internet. In: Proceedings of the First ACM Workshop on Hot Topics in Networking (HotNets 2002), Princeton, New Jersey, USA (October 2002)

    Google Scholar 

  17. Pfleeger, C.P.: Security in Computing, 2nd edn. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  18. Pfleeger, C.P., Pfleeger, S.L.: Security in Computing, 3rd edn. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  19. Podesser, M., Schmidt, H.P., Uhl, A.: Selective bitplane encryption for secure transmission of image data in mobile environments. In: Proceedings of the 5th IEEE Nordic Signal Processing Symposium (NORSIG 2002), Tromsø/Trondheim, Norway (October 2002)

    Google Scholar 

  20. RivuS project homepage, http://sourceforge.net/projects/rivus/ (January 2, 2005)

  21. Rosen, E., Viswanathan, A., Callon, R.: RFC 3031: Multiprotocol label switching architecture (January 2001)

    Google Scholar 

  22. Rushby, J.M., Randell, B.: A distributed secure system. In: Proceedings of the 1983 IEEE Symposium on Security and Privacy, Oakland, California, USA, pp. 127–135 (April 1983)

    Google Scholar 

  23. Servetti, A., De Martin, J.C.: Perception-based selective encryption of G.729 speech. In: Proceedings of the 2002 IEEE Internatinal Conference on Acoustics, Speech, and Signal Processing, Orlando, Florida, USA, May 2002, vol. 1, pp. 621–624 (May 2002)

    Google Scholar 

  24. Spanos, G.A., Maples, T.B.: Performance study of a selective encryption scheme for security of networked, real-time video. In: Proceedings of the 4th International Conference on Computer Communications and Networks (ICCCN 1995), Las Vegas, Nevada, USA, pp. 72–78 (September 1995)

    Google Scholar 

  25. Stallings, W.: Cryptography and Network Security: Priniples and Practice, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  26. Stewart, R.R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H.J., Taylor, T., Rytina, I., Kalla, M., Zhang, L., Paxson, V.: RFC 2960: Stream control transmission protocol (October 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindskog, S., Grinnemo, KJ., Brunstrom, A. (2005). Data Protection Based on Physical Separation: Concepts and Application Scenarios. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424925_138

Download citation

  • DOI: https://doi.org/10.1007/11424925_138

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25863-6

  • Online ISBN: 978-3-540-32309-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics