Skip to main content

Solid-State Nanopores for Biomolecular Analysis and Detection

  • Chapter
  • First Online:
Advances in Biochemical Engineering/Biotechnology

Abstract

Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Deamer D, Akeson M, Branton D (2016) Nat Biotechnol 34:518

    Google Scholar 

  2. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Proc Natl Acad Sci U S A 93:13770

    Google Scholar 

  3. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF (2021) Nat Biotechnol 39:1348

    Google Scholar 

  4. Ying Y-L, Hu Z-L, Zhang S, Qing Y, Fragasso A, Maglia G, Meller A, Bayley H, Dekker C, Long Y-T (2022) Nat Nanotechnol 17:1136

    Google Scholar 

  5. Hu ZL, Huo MZ, Ying YL, Long YT (2021) Angew Chem Int Ed 60:14738

    Google Scholar 

  6. Alfaro JA, Bohländer P, Dai M, Filius M, Howard CJ, van Kooten XF, Ohayon S, Pomorski A, Schmid S, Aksimentiev A, Anslyn EV, Bedran G, Cao C, Chinappi M, Coyaud E, Dekker C, Dittmar G, Drachman N, Eelkema R, Goodlett D, Hentz S, Kalathiya U, Kelleher NL, Kelly RT, Kelman Z, Kim SH, Kuster B, Rodriguez-Larrea D, Lindsay S, Maglia G, Marcotte EM, Marino JP, Masselon C, Mayer M, Samaras P, Sarthak K, Sepiashvili L, Stein D, Wanunu M, Wilhelm M, Yin P, Meller A, Joo C (2021) Nat Methods 18:604

    Google Scholar 

  7. Restrepo-Pérez L, Joo C, Dekker C (2018) Nat Nanotechnol 13:786

    Google Scholar 

  8. Mayer SF, Cao C, Dal Peraro M (2022) iScience 25:104145

    Google Scholar 

  9. Venkatesan BM, Bashir R (2011) Nat Nanotechnol 6:615

    Google Scholar 

  10. Varongchayakul N, Song J, Meller A, Grinstaff MW (2018) Chem Soc Rev 47:8512

    Google Scholar 

  11. Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov AP, Edel JB (2020) Nat Rev Mater 5:931

    Google Scholar 

  12. Haywood DG, Saha-Shah A, Baker LA, Jacobson SC (2015) Anal Chem 87:172

    Google Scholar 

  13. Guo L (2020) J Neural Eng 17:013001

    Google Scholar 

  14. Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL (2012) Nat Methods 9:487

    Google Scholar 

  15. Siwy ZS (2006) Adv Funct Mater 16:735

    Google Scholar 

  16. Huang X, Kong X-Y, Wen L, Jiang L, Huang X, Kong X, Wen L, Jiang L (2018) Adv Funct Mater 28:1801079

    Google Scholar 

  17. Sa N, Baker LA (2011) J Am Chem Soc 133:10398

    Google Scholar 

  18. Apel PY, Blonskaya IV, Orelovitch OL, Ramirez P, Sartowska BA (2011) Nanotechnology 22:175302

    Google Scholar 

  19. Hu K, Wang Y, Cai H, Mirkin MV, Gao Y, Friedman G, Gogotsi Y (2014) Anal Chem 86:8897

    Google Scholar 

  20. Zeng S, Wen C, Solomon P, Zhang S-L, Zhang Z (2019) Nat Nanotechnol 14:1056

    Google Scholar 

  21. Poggioli AR, Siria A, Bocquet L (2019) J Phys Chem B 123:1171

    Google Scholar 

  22. Wei C, Bard AJ, Feldberg SW (1997) Anal Chem 69:4627

    Google Scholar 

  23. Meller A, Nivon L, Branton D (2001) Phys Rev Lett 86:3435

    Google Scholar 

  24. Aksimentiev A (2010) Nanoscale 2:468

    Google Scholar 

  25. Keyser UF (2011) J R Soc Interface 8:1369

    Google Scholar 

  26. Yuan Z, Liu Y, Dai M, Yi X, Wang C (2020) Nanoscale Res Lett 15:1

    Google Scholar 

  27. Sohi AN, Beamish E, Tabard-Cossa V, Godin M (2020) Anal Chem 92:8108

    Google Scholar 

  28. Wang C, Bruce RL, Duch EA, Patel JV, Smith JT, Astier Y, Wunsch BH, Meshram S, Galan A, Scerbo C, Pereira MA, Wang D, Colgan EG, Lin Q, Stolovitzky G (2015) ACS Nano 9:1206

    Google Scholar 

  29. Zrehen A, Huttner D, Meller A (2019) ACS Nano 13:14388

    Google Scholar 

  30. Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O (2019) Adv Mater 31:1901483

    Google Scholar 

  31. Faucher S, Aluru N, Bazant MZ, Blankschtein D, Brozena AH, Cumings J, Pedro de Souza J, Elimelech M, Epsztein R, Fourkas JT (2019) J Phys Chem C 123:21309

    Google Scholar 

  32. Lee C, Joly L, Siria A, Biance A-L, Fulcrand R, Bocquet L (2012) Nano Lett 12:4037

    Google Scholar 

  33. Levy A, de Souza JP, Bazant MZ (2020) J Colloid Interface Sci 579:162

    Google Scholar 

  34. Luo Z-X, Xing Y-Z, Ling Y-C, Kleinhammes A, Wu Y (2015) Nat Commun 6:1

    Google Scholar 

  35. Feng J, Liu K, Graf M, Dumcenco D, Kis A, di Ventra M, Radenovic A (2016) Nat Mater 15:850

    Google Scholar 

  36. Kavokine N, Marbach S, Siria A, Bocquet L (2019) Nat Nanotechnol 14:573

    Google Scholar 

  37. Smeets RMM, Keyser UF, Dekker NH, Dekker C (2008) PNAS 105:417

    Google Scholar 

  38. Uram JD, Ke K, Mayer M (2008) ACS Nano 2:857

    Google Scholar 

  39. Shekar S, Niedzwiecki DJ, Chien CC, Ong P, Fleischer DA, Lin J, Rosenstein JK, Drndić M, Shepard KL (2016) Nano Lett 16:4483

    Google Scholar 

  40. Knowles SF, Weckman NE, Lim VJY, Bonthuis DJ, Keyser UF, Thorneywork AL (2021) Phys Rev Lett 127:137801

    Google Scholar 

  41. Fragasso A, Schmid S, Dekker C (2020) ACS Nano 14:1338

    Google Scholar 

  42. Gamaarachchi H, Samarakoon H, Jenner SP, Ferguson JM, Amos TG, Hammond JM, Saadat H, Smith MA, Parameswaran S, Deveson IW (2022) Nat Biotechnol 8:5386

    Google Scholar 

  43. Plesa C, Dekker C (2015) Nanotechnology 26:084003

    Google Scholar 

  44. Zhang Y, Akdemir A, Tremmel G, Imoto S, Miyano S, Shibuya T, Yamaguchi R (2020) BMC Bioinformatics 21:1

    Google Scholar 

  45. Zhang J, Liu X, Ying YL, Gu Z, Meng FN, Long YT (2017) Nanoscale 9:3458

    Google Scholar 

  46. Boža V, Brejová B, Vinař T (2017) PloS One 12:1

    Google Scholar 

  47. David M, Dursi LJ, Yao D, Boutros PC, Simpson JT (2017) Bioinformatics 33:49

    Google Scholar 

  48. Konishi H, Yamaguchi R, Yamaguchi K, Furukawa Y, Imoto S (2021) Bioinformatics 37:1211

    Google Scholar 

  49. Noakes MT, Brinkerhoff H, Laszlo AH, Derrington IM, Langford KW, Mount JW, Bowman JL, Baker KS, Doering KM, Tickman BI (2019) Nat Biotechnol 37:651

    Google Scholar 

  50. Rodríguez-Manzo JA, Puster M, Nicolaï A, Meunier V, Drndić M (2015) ACS Nano 9:6555

    Google Scholar 

  51. Freedman KJ, Otto LM, Ivanov AP, Barik A, Oh S-H, Edel JB (2016) Nat Commun 7:1

    Google Scholar 

  52. Bell NAW, Keyser UF (2016) Nat Nanotechnol 11:645

    Google Scholar 

  53. Larkin J, Henley RY, Jadhav V, Korlach J, Wanunu M (2017) Nat Nanotechnol 12:1169

    Google Scholar 

  54. Wang R, Gilboa T, Song J, Huttner D, Grinstaff MW, Meller A (2018) ACS Nano 12:11648

    Google Scholar 

  55. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson ATC, Drndić M (2010) Nano Lett 10:2915

    Google Scholar 

  56. Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, Dekker C (2010) Nano Lett 10:3163

    Google Scholar 

  57. Gilbert SM, Dunn G, Azizi A, Pham T, Shevitski B, Dimitrov E, Liu S, Aloni S, Zettl A (2017) Sci Rep 7:1

    Google Scholar 

  58. Danda G, Masih Das P, Chou YC, Mlack JT, Parkin WM, Naylor CH, Fujisawa K, Zhang T, Fulton LB, Terrones M, Johnson ATC, Drndić M (2017) ACS Nano 11:1937

    Google Scholar 

  59. He Y, Tsutsui M, Zhou Y, Miao X-S (2021) NPG Asia Mater 13:48

    Google Scholar 

  60. Chen Q, Liu Z (2019) Sensors 19:1886

    Google Scholar 

  61. Waugh M, Briggs K, Gunn D, Gibeault M, King S, Ingram Q, Jimenez AM, Berryman S, Lomovtsev D, Andrzejewski L, Tabard-Cossa V (2020) Nat Protoc 15:122

    Google Scholar 

  62. Lee K, Park K-B, Kim H-J, Yu J-S, Chae H, Kim H-M, Kim K-B (2018) Adv Mater 30:1704680

    Google Scholar 

  63. Lei X, Zhang J, Hong H, Yuan Z, Liu Z (2022) Micromachines (Basel) 13:923

    Google Scholar 

  64. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Nat Mater 2:537

    Google Scholar 

  65. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Nature 412:166

    Google Scholar 

  66. Zhou Y, Sun L, Watanabe S, Ando T (2022) Anal Chem 94:324

    Google Scholar 

  67. Zhu C, Huang K, Siepser NP, Baker LA (2020) Chem Rev 121:11726

    Google Scholar 

  68. Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR (2013) Annu Rev Anal Chem 6:329

    Google Scholar 

  69. Hu J, Yu MF (2010) Science 329:313

    Google Scholar 

  70. Hengsteler J, Mandal B, Van Nisselroy C, Lau GPS, Schlotter T, Zambelli T, Momotenko D (2021) Nano Lett 21:9093

    Google Scholar 

  71. Goutham S, Keerthi A, Ismail A, Bhardwaj A, Jalali H, You Y, Li Y, Hassani N, Peng H, Martins MVS, Wang F, Neek-Amal M, Radha B (2023) Nat Nanotechnol 18:596

    Google Scholar 

  72. Kwok H, Briggs K, Tabard-Cossa V (2014) PloS One 9:92880

    Google Scholar 

  73. Ying C, Ma T, Xu L, Rahmani M (2022) Nanomaterials 12:2384

    Google Scholar 

  74. Wei G, Hu R, Li Q, Lu W, Liang H, Nan H, Lu J, Li J, Zhao Q (2022) Langmuir ACS J Surf Colloids 38:6443

    Google Scholar 

  75. Chen X, Zhang S, Hou D, Duan H, Deng B, Zeng Z, Liu B, Sun L, Song R, Du J, Gao P, Peng H, Liu Z, Wang L (2021) ACS Appl Mater Interfaces 13:29926

    Google Scholar 

  76. Zhang Y, Miyahara Y, Derriche N, Yang W, Yazda K, Capaldi X, Liu Z, Grutter P, Reisner W (2019) Small Methods 3:1900147

    Google Scholar 

  77. Fang S, Yin B, Xie W, Zhou D, Tang P, He S, Yuan J, Wang D (2020) Rev Sci Instrum 91:093203

    Google Scholar 

  78. Ying C, Houghtaling J, Eggenberger OM, Guha A, Nirmalraj P, Awasthi S, Tian J, Mayer M (2018) ACS Nano 12:11458

    Google Scholar 

  79. Fried JP, Swett JL, Nadappuram BP, Fedosyuk A, Gee A, Dyck OE, Yates JR, Ivanov AP, Edel JB, Mol JA (2022) Nano Res 15:9881

    Google Scholar 

  80. Beamish E, Kwok H, Tabard-Cossa V, Godin M (2012) Nanotechnology 23:405301

    Google Scholar 

  81. Beamish E, Kwok H, Tabard-Cossa V, Godin M (2013) J Vis Exp 80:51081

    Google Scholar 

  82. Prabhu AS, Freedman KJ, Robertson JWF, Nikolov Z, Kasianowicz JJ, Kim MJ (2011) Nanotechnology 22:425302

    Google Scholar 

  83. Mussi V, Fanzio P, Firpo G, Repetto L, Valbusa U (2012) Nanotechnology 23:435301

    Google Scholar 

  84. Chen P, Mitsui T, Farmer DB, Golovchenko J, Gordon RG, Branton D (2004) Nano Lett 4:1333

    Google Scholar 

  85. Chernev A, Teng Y, Thakur M, Boureau V, Navratilova L, Cai N, Chen T, Wen L, Artemov V, Radenovic A (2023) Adv Mater 35:2302827

    Google Scholar 

  86. Wei R, Martin TG, Rant U, Dietz H (2012) Angew Chem Int Ed 51:4864

    Google Scholar 

  87. Pal S, Naik A, Rao A, Chakraborty B, Varma MM (2022) ACS Appl Nano Mater 5:8804

    Google Scholar 

  88. Thomsen RP, Malle MG, Okholm AH, Krishnan S, Bohr SSR, Sørensen RS, Ries O, Vogel S, Simmel FC, Hatzakis NS, Kjems J (2019) Nat Commun 10:5655

    Google Scholar 

  89. Xing Y, Dorey A, Jayasinghe L, Howorka S (2022) Nat Nanotechnol 17:708

    Google Scholar 

  90. Krishnan S, Ziegler D, Arnaut V, Martin TG, Kapsner K, Henneberg K, Bausch AR, Dietz H, Simmel FC (2016) Nat Commun 7

    Google Scholar 

  91. Fragasso A, de Franceschi N, Stömmer P, van der Sluis EO, Dietz H, Dekker C (2021) ACS Nano 15:12768

    Google Scholar 

  92. Ponnuswamy N, Bastings MMC, Nathwani B, Ryu JH, Chou LYT, Vinther M, Li WA, Anastassacos FM, Mooney DJ, Shih WM (2017) Nat Commun 8:15654

    Google Scholar 

  93. Niedzwiecki DJ, DiPaolo B, Lin C-Y, Castan A, Keneipp R, Drndić M (2021) ACS Sens 6:2534

    Google Scholar 

  94. Alawami MF, Bošković F, Zhu J, Chen K, Sandler SE, Keyser UF (2022) iScience 25:104191

    Google Scholar 

  95. Chou Y-C, Masih Das P, Monos DS, Drndić M (2020) ACS Nano 14:6715

    Google Scholar 

  96. Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N (2021) Chem Rev 121:8095

    Google Scholar 

  97. Hlady V, Buijs J (1996) Curr Opin Biotechnol 8:72

    Google Scholar 

  98. Eggenberger OM, Ying C, Mayer M (2019) Nanoscale 11:19636

    Google Scholar 

  99. Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC, Li J, Yang J, Mayer M (2011) Nat Nanotechnol 6:253

    Google Scholar 

  100. Vaitheeswaran S, Thirumalai D (2008) Proc Natl Acad Sci U S A 105:17636

    Google Scholar 

  101. Karmi A, Sakala GP, Rotem D, Reches M, Porath D (2020) ACS Appl Mater Interfaces 12:14563

    Google Scholar 

  102. Lepoitevin M, Ma T, Bechelany M, Janot JM, Balme S (2017) Adv Colloid Interface Sci 250:195

    Google Scholar 

  103. Brilmayer R, Förster C, Zhao L, Andrieu-Brunsen A (2020) Curr Opin Biotechnol 63:200

    Google Scholar 

  104. Duznovic I, Gräwe A, Weber W, Müller LK, Ali M, Ensinger W, Tietze A, Stein V (2021) Small 17:2101066

    Google Scholar 

  105. Bulbul G, Liu G, Vithalapur NR, Atilgan C, Sayers Z, Pourmand N (2019) ACS Chem Neurosci 10:1970

    Google Scholar 

  106. Ren R, Wang X, Cai S, Zhang Y, Korchev Y, Ivanov AP, Edel JB, Ren XR, Wang S, Cai AP, Ivanov BE, Zhang Y, Korchev Y (2020) Small Methods 4:2000356

    Google Scholar 

  107. Actis P, Rogers A, Nivala J, Vilozny B, Seger RA, Jejelowo O, Pourmand N (2011) Biosens Bioelectron 26:4503

    Google Scholar 

  108. Ding S, Gao C, Gu LQ (2009) Anal Chem 81:6649

    Google Scholar 

  109. Mayne L, Lin CY, Christie SDR, Siwy ZS, Platt M (2018) ACS Nano 12:4844

    Google Scholar 

  110. Acar ET, Buchsbaum SF, Combs C, Fornasiero F, Siwy ZS (2019) Sci Adv 5:2568

    Google Scholar 

  111. Abelow AE, Schepelina O, White RJ, Vallée-Bélisle A, Plaxco KW, Zharov I (2010) Chem Commun (Camb) 46:7984

    Google Scholar 

  112. Nakatsuka N, Failletaz A, Eggemann D, Forro C, Voros J, Momotenko D (2021) Anal Chem 93:4033

    Google Scholar 

  113. Nakatsuka N, Heard KJ, Failletaz A, Momotenko D, Voros J, Gage FH, Vadodaria KC (2021) Mol Psychiatry 26:2753

    Google Scholar 

  114. Mubarak A, Neumann R, Ensinger W (2010) ACS Nano 4:7267

    Google Scholar 

  115. Mussi V, Fanzio P, Repetto L, Firpo G, Stigliani S, Tonini GP, Valbusa U (2011) Biosens Bioelectron 29:125

    Google Scholar 

  116. Wei R, Gatterdam V, Wieneke R, Tampé R, Rant U (2012) Nat Nanotechnol 7:257

    Google Scholar 

  117. Lazzara TD, Kliesch TT, Janshoff A, Steinem C (2011) ACS Appl Mater Interfaces 3:1068

    Google Scholar 

  118. Pla-Roca M, Isa L, Kumar K, Reimhult E (2015) ACS Appl Mater Interfaces 7:6030

    Google Scholar 

  119. Ananth A, GenuaM AN, Díaz L, Eisele NB, Frey S, Dekker C, Richter RP, Görlich D (2018) Small 14:1703357

    Google Scholar 

  120. Taniguchi M, Ohshiro T (2019) Tokeshi M (ed) Applications of microfluidic systems in biology and medicine. Springer, Singapore, pp 301–324

    Google Scholar 

  121. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Nat Nanotechnol 4:265

    Google Scholar 

  122. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M (2015) Nat Methods 12:351

    Google Scholar 

  123. Lu H, Giordano F, Ning Z (2016) Genomics Proteomics Bioinf 14:265

    Google Scholar 

  124. Goto Y, Akahori R, Yanagi I, Takeda K (2020) J Hum Genet 65:69

    Google Scholar 

  125. Qiu H, Zhou W, Guo W (2021) ACS Nano 15:18848

    Google Scholar 

  126. Balasubramanian R, Pal S, Rao A, Naik A, Chakraborty B, Maiti PK, Varma MM (2020) ACS Appl Bio Mater 4:451

    Google Scholar 

  127. Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C (2012) Nano Lett 12:1038

    Google Scholar 

  128. Fologea D, Uplinger J, Thomas B, McNabb DS, Li J (2005) Nano Lett 5:1734

    Google Scholar 

  129. Hyun C, Kaur H, Rollings R, Xiao M, Li J (2013) ACS Nano 7:5892

    Google Scholar 

  130. Keyser UF, Koeleman BN, Van Dorp S, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Nat Phys 2:473

    Google Scholar 

  131. Banerjee S, Wilson J, Shim J, Shankla M, Corbin EA, Aksimentiev A, Bashir R (2015) Adv Funct Mater 25:936

    Google Scholar 

  132. Wang C, Sensale S, Pan Z, Senapati S, Chang HC (2021) Nat Commun 12:1

    Google Scholar 

  133. Di Fiori N, Squires A, Bar D, Gilboa T, Moustakas TD, Meller A (2013) Nat Nanotechnol 8:12

    Google Scholar 

  134. Squires AH, Hersey JS, Grinstaff MW, Meller A (2013) J Am Chem Soc 135:16304

    Google Scholar 

  135. Al Sulaiman D, Cadinu P, Ivanov AP, Edel JB, Ladame S (2018) Nano Lett 18:6084

    Google Scholar 

  136. Venta K, Shemer G, Puster M, Rodríguez-Manzo JA, Balan A, Rosenstein JK, Shepard K, Drndić M (2013) ACS Nano 7:4629

    Google Scholar 

  137. Chien CC, Shekar S, Niedzwiecki DJ, Shepard KL, Drndić M (2019) ACS Nano 13:10545

    Google Scholar 

  138. Brinkerhoff H, Kang ASW, Liu J, Aksimentiev A, Dekker C (2021) Science 374:1509

    Google Scholar 

  139. Nova IC, Ritmejeris J, Brinkerhoff H, Koenig TJR, Gundlach JH, Dekker C (2022) BioRxiv. 2022.11.11.516163

    Google Scholar 

  140. Restrepo-Pérez L, John S, Aksimentiev A, Joo C, Dekker C (2017) Nanoscale 9:11685

    Google Scholar 

  141. Payet L, Martinho M, Pastoriza-Gallego M, Betton JM, Auvray L, Pelta J, Mathé J (2012) Anal Chem 84:4071

    Google Scholar 

  142. Li J, Fologea D, Rollings R, Ledden B (2014) Protein Pept Lett 21:256

    Google Scholar 

  143. Freedman KJ, Jürgens M, Prabhu A, Ahn CW, Jemth P, Edel JB, Kim MJ (2011) Anal Chem 83:5137

    Google Scholar 

  144. Freedman KJ, Haq SR, Edel JB, Jemth P, Kim MJ (2013) Sci Rep 3:1638

    Google Scholar 

  145. Soni N, Freundlich N, Ohayon S, Huttner D, Meller A (2022) ACS Nano 16:11405

    Google Scholar 

  146. Hagan JT, Gonzalez A, Shi Y, Han GGD, Dwyer JR (2022) ACS Nano 16:5537

    Google Scholar 

  147. Wanunu M, Sutin J, McNally B, Chow A, Meller A (2008) Biophys J 95:4716

    Google Scholar 

  148. Aramesh M, Forró C, Dorwling-Carter L, Lüchtefeld I, Schlotter T, Ihle SJ, Shorubalko I, Hosseini V, Momotenko D, Zambelli T, Klotzsch E, Vörös J (2019) Nat Nanotechnol 14:791

    Google Scholar 

  149. Schlotter T, Weaver S, Forró C, Momotenko D, Vörös JJ, Zambelli T, Aramesh M (2020) ACS Nano 14:12993

    Google Scholar 

  150. Meister AA, Gabi M, Behr P, Studer P, Vörös J, Niedermann P, Bitterli J, Polesel-Maris JJ, Liley M, Heinzelmann H, Zambelli T (2009) Nano Lett 9:2501

    Google Scholar 

  151. Cheung KM, Yang KA, Nakatsuka N, Zhao C, Ye M, Jung ME, Yang H, Weiss PS, Stojanović MN, Andrews AM (2019) ACS Sens 4:3308

    Google Scholar 

  152. Schlotter T, Kloter T, Hengsteler J, Ragavan S, Hu H, Zhang X, Duru J, Voros J, Zambelli T, Nakatsuka N (2022) Preprint (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-3015491/v1

  153. Rodriguez-Larrea D (2021) Biosens Bioelectron 180:113108

    Google Scholar 

  154. Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M (2010) Nat Nanotechnol 5:807

    Google Scholar 

  155. Wang Y, Zheng D, Tan Q, Wang MX, Gu L-Q (2011) Nat Nanotechnol 6:668

    Google Scholar 

  156. Burck N, Gilboa T, Gadi A, Patkin Nehrer M, Schneider RJ, Meller A (2021) Clin Chem 67:753

    Google Scholar 

  157. Galenkamp NS, Soskine M, Hermans J, Wloka C, Maglia G (2018) Nat Commun 9:4085

    Google Scholar 

  158. Liu W, Yang Z-L, Yang C-N, Ying Y-L, Long Y-T (2022) Chem Sci 13:4109

    Google Scholar 

  159. Bayley H, Luchian T, Shin S-H, Steffensen MB (2008) Biophysics 12:251

    Google Scholar 

  160. van Kooten XF, Rozevsky Y, Marom Y, Ben Sadeh E, Meller A (2022) Nanoscale 14:4977

    Google Scholar 

  161. Bošković F, Zhu J, Tivony R, Ohmann A, Chen K, Alawami MF, Đorđević M, Ermann N, Dias JP, Fairhead M (2021) MedRxiv

    Google Scholar 

  162. He L, Tessier DR, Briggs K, Tsangaris M, Charron M, McConnell EM, Lomovtsev D, Tabard-Cossa V (2021) Nat Commun 12:4576

    Google Scholar 

  163. Ren R, Sun M, Goel P, Cai S, Kotov NA, Kuang H, Xu C, Ivanov AP, Edel JB (2021) Adv Mater 33:2103067

    Google Scholar 

  164. Leitao SM, Navikas V, Miljkovic H, Drake B, Marion S, Pistoletti Blanchet G, Chen K, Mayer SF, Keyser UF, Kuhn A, Fantner GE, Radenovic A (2023) Nat Nanotechnol 18:1078

    Google Scholar 

  165. Chau C, Marcuccio F, Soulias D, Edwards MA, Tuplin A, Radford SE, Hewitt E, Actis P (2022) ACS Nano 16:20075

    Google Scholar 

  166. Chau CC, Radford SE, Hewitt EW, Actis P (2020) Nano Lett 20:5553

    Google Scholar 

  167. Nakatsuka N, Faillétaz A, Eggemann D, Forró C, Vörös J, Momotenko D (2021) Anal Chem 93:4033

    Google Scholar 

  168. Ding T, Yang J, Wang J, Pan V, Lu Z, Ke Y, Zhang C (2022) Biosens Bioelectron 195:113658

    Google Scholar 

  169. Bošković F, Zhu J, Chen K, Keyser UF (2019) Nano Lett 19:7996

    Google Scholar 

  170. Moraldo C, Vuille-dit-Bille E, Shkodra B, Kloter T, Nakatsuka N (2022) J Neurosci Methods 365:109386

    Google Scholar 

  171. Cai S-L, Zheng Y-B, Cao S-H, Cai X-H, Li Y-Q (2016) Chem Commun 52:12450

    Google Scholar 

  172. Wu J, Liang L, Zhang M, Zhu R, Wang Z, Yin Y, Yin B, Weng T, Fang S, Xie W, Wang L, Wang D (2022) ACS Appl Mater Interfaces 14:12077

    Google Scholar 

  173. Robertson JWFF, Reiner JE (2018) Proteomics 18:1800026

    Google Scholar 

  174. Hu R, Tong X, Zhao Q (2020) Adv Healthc Mater 9:2000933

    Google Scholar 

  175. Meyer N, Abrao-Nemeir I, Janot J-M, Torrent J, Lepoitevin M, Balme S (2021) Adv Colloid Interface Sci 298:102561

    Google Scholar 

  176. Zhang S, Shi W, Bin Li K, Han DM, Xu JJ (2022) Anal Chem 94:4407

    Google Scholar 

  177. Esteller M (2007) Nat Rev Genet 8:4

    Google Scholar 

  178. Choy JS, Wei S, Lee JY, Tan S, Chu S, Lee TH (2010) J Am Chem Soc 132:1782

    Google Scholar 

  179. Tang H, Wang H, Yang C, Zhao D, Qian Y, Li Y (2020) Anal Chem 92:3042

    Google Scholar 

  180. Hanif S, Liu H-L, Ahmed SA, Yang J-M, Zhou Y, Pang J, Ji L-N, Xia X-H, Wang K (2017) Anal Chem 89:9911

    Google Scholar 

  181. Zhang S, Liu G, Chai H, Zhao Y-D, Yu L, Chen W (2019) Electrochem Commun 99:71

    Google Scholar 

  182. Yusko EC, Bruhn BR, Eggenberger OM, Houghtaling J, Rollings RC, Walsh NC, Nandivada S, Pindrus M, Hall AR, Sept D, Li J, Kalonia DS, Mayer M (2017) Nat Nanotechnol 12:360

    Google Scholar 

  183. Schmid S, Stömmer P, Dietz H, Dekker C (2021) Nat Nanotechnol 16:1244

    Google Scholar 

  184. Meyer N, Arroyo N, Janot JM, Lepoitevin M, Stevenson A, Nemeir IA, Perrier V, Bougard D, Belondrade M, Cot D, Bentin J, Picaud F, Torrent J, Balme S (2021) ACS Sens 6:3733

    Google Scholar 

  185. Mitscha-Baude G, Stadlbauer B, Howorka S, Heitzinger C (2021) ACS Nano 15:9900

    Google Scholar 

  186. Hagan JT, Sheetz BS, Bandara YM, Karawdeniya BI, Morris MA, Chevalier RB, Dwyer JR (2020) Anal Bioanal Chem 412:6639

    Google Scholar 

  187. Bayat P, Rambaud C, Priem B, Bourderioux M, Bilong M, Poyer S, Pastoriza-Gallego M, Oukhaled A, Mathé J, Daniel R (2022) Nat Commun 13:1

    Google Scholar 

  188. Karawdeniya BI, Bandara YMNDY, Nichols JW, Chevalier RB, Dwyer JR (2018) Nat Commun 9:3278

    Google Scholar 

  189. Cai Y, Zhang B, Liang L, Wang S, Zhang L, Wang L, Cui HL, Zhou Y, Wang D (2021) Plant Commun 2:100106

    Google Scholar 

  190. Im J, Lindsay S, Wang X, Zhang P (2019) ACS Nano 13:6308

    Google Scholar 

  191. Zhang H, Zhao T, Huang P, Wang Q, Tang H, Chu X, Jiang J (2022) ACS Nano 16:5752

    Google Scholar 

  192. Yu S-Y, Ruan Y-F, Liu Y-L, Han D-M, Zhou H, Zhao W-W, Jiang D, Xu J-J, Chen H-Y (2021) ACS Sens 6:1529

    Google Scholar 

  193. Rastogi RP, Richa A, Kumar MB, Tyagi, Sinha RP (2010) J Nucleic Acids 2010:592980

    Google Scholar 

  194. Zhao T, Wang J-W, Zhang H-S, Zheng X, Chen Y-P, Tang H, Jiang J-H (2022) Anal Chem 94:15541

    Google Scholar 

  195. Nakatsuka N, Cao HH, Deshayes S, Melkonian AL, Kasko AM, Weiss PS, Andrews AM (2018) ACS Appl Mater Interfaces 10:23490

    Google Scholar 

  196. Hou Y, Hou J, Liu X (2021) ChemBioChem 22:1948

    Google Scholar 

  197. Álvarez-Martos I, Ferapontova EE (2017) Biochem Biophys Res Commun 489:381

    Google Scholar 

  198. Nakatsuka N, Andrews AM (2017) ACS Chem Neurosci 8:218

    Google Scholar 

  199. Nakatsuka N, Yang K-A, Abendroth JM, Cheung KM, Xu X, Yang H, Zhao C, Zhu B, Rim YS, Yang Y, Weiss PS, Stojanović MN, Andrews AM (2018) Science 362:319

    Google Scholar 

  200. Stuber A, Douaki A, Hengsteler J, Buckingham D, Momotenko D, Garoli D, Nakatsuka N (2023) ACS Nano 17:19168

    Google Scholar 

  201. van der Verren SE, van Gerven N, Jonckheere W, Hambley R, Singh P, Kilgour J, Jordan M, Wallace EJ, Jayasinghe L, Remaut H (2020) Nat Biotechnol 38:1415

    Google Scholar 

  202. Kondylis P, Zhou J, Harms ZD, Kneller AR, Lee LS, Zlotnick A, Jacobson SC (2017) Anal Chem 89:4855

    Google Scholar 

  203. Zhang M, Harms ZD, Greibe T, Starr CA, Zlotnick A, Jacobson SC (2022) ACS Nano 16:7352

    Google Scholar 

  204. Stuber A, Cavaccini A, Manole A, Hengsteler J, Burdina A, Patriarchi T, Karayannis T, Nakatsuka N (2023) ACS Meas Sci Au. https://doi.org/10.1021/acsmeasuresciau.3c00047

  205. Tahvildari R, Beamish E, Briggs K, Chagnon-Lessard S, Sohi AN, Han S, Watts B, Tabard-Cossa V, Godin M (2017) Small 13:1602601

    Google Scholar 

  206. Zhu X, Li X, Gu C, Ye Z, Cao Z, Zhang X, Jin C, Liu Y (2021) ACS Nano 15:9882

    Google Scholar 

  207. Li W, Zhou J, Maccaferri N, Krahne R, Wang K, Garoli D (2022) Anal Chem 94:503

    Google Scholar 

  208. Rahman M, Sampad MJN, Hawkins A, Schmidt H (2021) Lab Chip 21:3030

    Google Scholar 

  209. Spitzberg JD, Zrehen A, van Kooten XF, Meller A (2019) Adv Mater 31:1900422

    Google Scholar 

  210. Zrehen A, Ohayon S, Huttner D, Meller A (2020) Sci Rep 10:1

    Google Scholar 

  211. Emenike B, Nwajiobi O, Raj M (2022) Front Chem 10:714

    Google Scholar 

  212. Organick L, Chen Y-J, Dumas Ang S, Lopez R, Liu X, Strauss K, Ceze L (2020) Nat Commun 11:1

    Google Scholar 

  213. Doricchi A, Platnich CM, Gimpel A, Horn F, Earle M, Lanzavecchia G, Cortajarena AL, Liz-Marzán LM, Liu N, Heckel R (2022) ACS Nano 16:17552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nako Nakatsuka .

Ethics declarations

The authors acknowledge ETH Zurich for funding and Prof. Janos Vörös for helpful discussions.

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stuber, A., Schlotter, T., Hengsteler, J., Nakatsuka, N. (2023). Solid-State Nanopores for Biomolecular Analysis and Detection. In: Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2023_240

Download citation

  • DOI: https://doi.org/10.1007/10_2023_240

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics