Skip to main content

Mushroom Production in the Southern Cone of South America: Bioeconomy, Sustainable Development and Its Current Bloom

  • Chapter
  • First Online:
Biochemical Engineering and Biotechnology of Medicinal Mushrooms

Abstract

A Sustainable Development Goals (SDGs) based analysis is presented here for business development of the production of edible and medicinal mushrooms using agro-wastes in the Southern Cone of South America. This circular economy approach using edible and medicinal mushroom production on lignocellulosic residues is discussed by analysing both its advantages and drawbacks. Among its main benefits, it is notable that mushroom cultivation using lignocellulosic residues promotes innovation aimed at environmental sustainability, facilitating diversification of the labour supply and the transfer of science to the socio-cultural sphere, which also increases the availability of healthy foods. However, there are some bottlenecks in the process, such as the continuous supply chain of substrates for fungal growth, the lack of equipment and infrastructure for the implementation of cultivation systems in extreme habitats, as well as authorization requirements and other limitations related to a non-fungiphilic culture society. Therefore, this chapter tries to provide key tools for establishing sustainable guidelines for the procurement of local healthy food and other products derived from mushroom cultivation using agricultural residues in the region, which might bloom due to an SDGs-based circular economy approach.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GAP :

Good agricultural practices

NGO:

Non-governmental organization

SDGs:

Sustainable development goals

SME :

Small and medium enterprise

SSC :

Solid state cultivation

SSH :

Sunflower (Helianthus annuus) seed hull

References

  1. Chang R (1996) Functional properties of edible mushrooms. Nutr Rev 54:S91

    CAS  PubMed  Google Scholar 

  2. Gupta S, Summuna B, Gupta M, Annepu SK (2018) Edible mushrooms: cultivation, bioactive molecules, and health benefits. Bioactive Mol Food:1–33

    Google Scholar 

  3. Zhou R, Liu ZK, Zhang YN, Wong JH, Ng TB, Liu F (2019) Research progress of bioactive proteins from the edible and medicinal mushrooms. Curr Protein Pept Sci 20:196–219

    CAS  PubMed  Google Scholar 

  4. Zhao S, Gao Q, Rong C, Wang S, Zhao Z, Liu Y, Xu J (2020) Immunomodulatory effects of edible and medicinal mushrooms and their bioactive Immunoregulatory products. J Fungi 6:269

    CAS  Google Scholar 

  5. Rajarathnam S, Shashirekha MNJ, Bano Z (1998) Biodegradative and biosynthetic capacities of mushrooms: present and future strategies. Crit Rev Biotechnol 18:91–236

    CAS  PubMed  Google Scholar 

  6. Stamets P (2005) How mushrooms can help save the world. In: Mycelium running. Random House Digital, Inc. Ten Speed Press, Berkeley, p 339

    Google Scholar 

  7. Assan N, Mpofu T (2014) The influence of substrate on mushroom productivity. Sci J Crop Sci 3:86–91

    Google Scholar 

  8. Grimm D, Wösten HA (2018) Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol 102(18):7795–7803

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Savoie JM, Mata G (2016) Growing Agaricus bisporus as a contribution to sustainable agricultural development. In: Petre M (ed) Mushroom biotechnology. Developments and applications. Academic Press, Cambridge, pp 69–91

    Google Scholar 

  10. Yamanaka K (2017) Cultivation of mushrooms in plastic bottles and small bags. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Hoboken, pp 309–338

    Google Scholar 

  11. Philippoussis A, Diamantopoulou P (2011) Agro-food industry wastes and agricultural residues conversion into high value products by mushroom cultivation. In: Proceedings of the 7th international conference on mushroom biology and mushroom products (ICMBMP7), France, pp 4–7

    Google Scholar 

  12. Barney DL (1997) Growing mushrooms commercially. University of Idaho

    Google Scholar 

  13. Kaur K (2016) Impact of training course on knowledge gain of mushroom trainees. Education 7:8–2

    Google Scholar 

  14. Albertó E, Curvetto N, Deschamps J, González Matute R, Lechner B (2010) Hongos Silvestres y de Cultivo en Argentina: Historia, regiones y sistemas de producción, hongos silvestres de valor económico, consumo, mercado interno y externo, legislación, oferta tecnológica e investigación y desarrollo. In: Martinez Carrera D, Curvetto N, Sobal M, Morales P, Mora V (eds) Hacia un desarrollo sostenible del sistema de producción-consumo de los hongos comestibles y medicinales en Latinoamérica: avances y perspectivas en el siglo XXI. Red Latinoamericana de Hongos Comestibles y Medicinales: Producción, Desarrollo y Consumo. Puebla, pp 333–358

    Google Scholar 

  15. Figlas ND, González Matute R, Curvetto NR (2016) Sunflower seed hull: its value as a broad mushroom substrate. J Food Process Preserv 1:1002

    Google Scholar 

  16. Consejo Federal de Inversiones (2008) Desarrollo de producciones no convencionales en la cuenca del salado “Hongos Comestibles”. http://biblioteca.cfi.org.ar/wp-content/uploads/sites/2/2008/01/47101.pdf

  17. Le Fosse GH (2006) Investigación de mercado de oferta y demanda de hongos en la República Argentina (No. E70/1). CFI

    Google Scholar 

  18. Valenzuela-Flores E (2003) Hongos comestibles silvestres colectados en la X región de Chile. Bol Micol 18:1–14

    Google Scholar 

  19. Valenzuela-Flores E (1993) Estudio sistemático, corológico y ecológico de los Agaricales sensu lato de los bosques autóctonos de la Región de Los Lagos en Chile. Tesis doctoral. Universidad de Alcalá de Henares

    Google Scholar 

  20. Lazo W (2001) Hongos de Chile: Atlas Micológico. Facultad de Ciencias. Universidad de Chile

    Google Scholar 

  21. Salazar V, Palfner G (2015) Productividad del hongo nativo Cortinarius austroturmalis en bosques de Nothofagus siempreverde y caducifolio de las Reservas Nacionales Altos de Lircay y Los Ruiles de la VII región, Chile. Bol Micol 30:28–39

    Google Scholar 

  22. Salazar V (2016) Amanita diemii Singer y Amanita merxmellueri Bresinsky & Garrido (Agaricales, Basidiomycota), las amanitas comestibles de Chile. Bol Micol 31:28–35

    Google Scholar 

  23. Furci G (2018) Guía de campo hongos de Chile (2). Fundación Científica Fungi

    Google Scholar 

  24. Wold CW, Gerwick WH, Wangensteen H, Inngjerdingen KT (2020) Bioactive triterpenoids and water-soluble melanin from Inonotus obliquus (Chaga) with immunomodulatory activity. J Funct Foods 71:104025

    CAS  Google Scholar 

  25. Zhang J, Wen C, Duan Y, Zhang H, Ma H (2019) Advance in Cordyceps militaris (Linn) link polysaccharides: isolation, structure, and bioactivities: a review. Int J Biol Macromol 132:906–914

    CAS  PubMed  Google Scholar 

  26. López L, Fuenzalida F (1998) Algunos problemas identificados en la comercialización de productos provenientes del bosque nativo. Proyecto Manejo Sustentable del Bosque Nativo. CONAF

    Google Scholar 

  27. Sepúlveda J (2005) Principios de alimentación mapuche como un aporte a la soberanía alimentaria. Centro de Educación y Tecnología para el Desarrollo del Sur (CETSUR). Temuco, Chile

    Google Scholar 

  28. Montenegro I (2016) Caracterización del sistema de recolección de hongos silvestres comestibles de la organización de mujeres campesinas “Domo Peuma”, Comuna de Paillaco, Región de Los Ríos. Tesis de pregrado. Facultad de Ciencias Agronómicas. Universidad de Chile

    Google Scholar 

  29. Stamets P (2011) In: Growing gourmet and medicinal mushrooms. Ten Speed Press, Berkeley, p 614

    Google Scholar 

  30. Prasad S, Rathore H, Sharma S, Yadav AS (2015) Medicinal mushrooms as a source of novel functional food. Int J Food Sci Nutr Diet 4:221–225

    CAS  Google Scholar 

  31. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol:1–15

    Google Scholar 

  32. González Matute R, Devalis R, Curvetto N (2017) Cultivo de hongos comestibles como forma de reinserción social. Boletín electrónico 29. Conicet, Bahía Blanca. https://bahiablanca.conicet.gov.ar/boletin/boletin29/index56c7.html?option=com_cont

  33. Mendoza Moreno I, Castañeda Abanto D (2017) Impacto socioeconómico del proyecto: Puesta en Valor de Hongos Comestibles en Bosques de Pino Cajamarca: 2014–2017

    Google Scholar 

  34. Larson JBM (2006) Crop workers in the wastern United States–Mushroom workers in Southeastern Pennsylvania. Hort 39:13–18

    Google Scholar 

  35. Cox BD, Whichelow MJ, Prevost AT (2000) Seasonal consumption of salad vegetables and fresh fruit in relation to the development of cardiovascular disease and cancer. Public Health Nutr 3:19–29

    CAS  PubMed  Google Scholar 

  36. Farzana T, Mohajan S, Saha T, Hossain MN, Haque MZ (2017) Formulation and nutritional evaluation of a healthy vegetable soup powder supplemented with soy flour, mushroom, and moringa leaf. Food Sci Nutr 5:911–920

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh J, Sindhu SC, Kumari V (2017) Development and evaluation of shiitake mushroom (Lentinus edodes) instant soup mixes. Int J Curr Microbiol App Sci 6:1232–1238

    CAS  Google Scholar 

  38. Rathore H, Prasad S, Sharma S (2017) Mushroom nutraceuticals for improved nutrition and better human health: a review. PharmaNutrition 5:35–46

    Google Scholar 

  39. Sánchez C (2017) Bioactives from mushroom and their application. In: Food bioactives. Springer, Cham, pp 23–57

    Google Scholar 

  40. Dundar A, Acay H, Yildiz A (2009) Effect of using different lignocellulosic wastes for cultivation of Pleurotus ostreatus (Jacq.) P Kumm. on mushroom yield, chemical composition and nutritional value. Afr J Biotechnol 8:662–666

    CAS  Google Scholar 

  41. Lu H, Lou H, Hu J, Liu Z, Chen Q (2020) Macrofungi: a review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 19:2333–2356

    PubMed  Google Scholar 

  42. Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, Wösten HA (2020) Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol 7:1–23

    Google Scholar 

  43. Dorr E, Koegler M, Gabrielle B, Aubry C (2021) Life cycle assessment of a circular, urban mushroom farm. J Clean Prod 288:125668

    Google Scholar 

  44. Lugones GE, Britto FA (2020) Bases y determinantes para una colaboración exitosa entre ciencia y producción. 1° Edición, Ciudad Autónoma de Buenos Aires: CIECTI 2020. Libro digital, PDF

    Google Scholar 

  45. Ellen Macartur Foundation (2013) Towards the circular economy: economic and business rationale for an accelerated transition. https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf

  46. Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42

    Google Scholar 

  47. Hanafi FHM, Rezania S, Taib SM, Din MF, Yamauchi M, Sakamoto M, Ebrahimi SS (2018) Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. J Mater Cycles Waste Manag 20:1383–1396

    Google Scholar 

  48. Rinker DL (2017) Spent mushroom substrate uses. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Hoboken, pp 427–454

    Google Scholar 

  49. Slezak R, Krzystek L, Ledakowicz S (2019) Steam gasification of pyrolysis char from spent mushroom substrate. Biomass Bioenergy 122:336–342

    CAS  Google Scholar 

  50. Quispe I, Navia R, Kahhat R (2019) Life cycle assessment of rice husk as an energy source. A Peruvian case study. J Clean Prod 209:1235–1244

    Google Scholar 

  51. Sarica M, Cam MA (2000) Potential of hazelnut husks as a broiler litter material. Br Poult Sci 41:541–543

    CAS  PubMed  Google Scholar 

  52. Wang B, Mao SY, Yang HJ, Wu YM, Wang JK, Li SL, Liu JX (2014) Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows. J Dairy Sci 97:7706–7715

    CAS  PubMed  Google Scholar 

  53. Kameník I, Mareček J (2014) The use of waste cellulose in production of white mushroom substrate. Acta Univ Agric Silvic Mendel Brun 59:131–136

    Google Scholar 

  54. Fan L, Pandey A, Mohan R, Soccol CR (2000) Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol 20:41–52

    Google Scholar 

  55. Ritota M, Manzi P (2019) Pleurotus spp cultivation on different agri-food by-products: example of biotechnological application. Sustainability 11:5049

    CAS  Google Scholar 

  56. Croan SC (2004) Conversion of conifer wastes into edible and medicinal mushrooms. Forest Prod J 54:68–76

    Google Scholar 

  57. Zhang J, Du M (2017) Application status and prospect of Pinus massoniana sawdust as the substrate for the cultivation of edible fungi. Food Nutr Sci 8:1105–1113

    CAS  Google Scholar 

  58. Dias ES (2010) Mushroom cultivation in Brazil: challenges and potential for growth. Ciênc Agrotec 34:795–803

    Google Scholar 

  59. Carrera DM, Morales P, Sobal M, Bonilla M, Martínez W (2007) 6.1 México ante la globalización en el siglo XXI: El sistema de producción-consumo de los hongos comestibles. In: Sánchez JE Martínez-Carrera D, Mata G,Leal H (eds) El cultivo de setas Pleurotus spp en México. Ecosur-Conacyt, México, pp 1–20

    Google Scholar 

  60. Gold MA, Cernusca MM, Godsey LD (2008) A competitive market analysis of the United States shiitake mushroom marketplace. Hort Technol 18:489–499

    Google Scholar 

  61. Baiano A (2020) Craft beer: an overview. Compr Rev Food Sci Food Saf 100:35–50

    CAS  Google Scholar 

  62. Moltoni L (2010) Aglomeraciones productivas y procesos de innovación: El caso del distrito industrial de maquinaria agrícola del oeste (DIMA). In: Congreso Internacional de Desarrollo Local. 2. Jornadas Nacionales de Ciencias Sociales y Desarrollo Rural. San Justo, Buenos Aires

    Google Scholar 

  63. Verdezoto C, Jhajayra K (2018) Plan de negocios para la producción y exportación de hongos ostra empacados al vacío hacia Chile. Bachelor’s thesis, Universidad de las Américas, Quito

    Google Scholar 

  64. Tambunan T (2007) SME development in Indonesia with reference to networking, innovativeness, market expansion and government policy. Asian SMEs and Globalization, ERIA Research Project Report (5)

    Google Scholar 

  65. Escobar Orozco C, Salgado Altamirano MJ (2018) Innovacion y universidad: El Papel de las universidades y su influencia en la creacion de cambios innovadores en los Productos Tecnologicos y Servicios (PTS) para el desarrollo del sector agrícola. Doctoral dissertation, Universidad Nacional Autónoma de Nicaragua, Managua

    Google Scholar 

  66. Zhang Z, McHugh AD, Li H, Ma S, Wang Q, He J, Zheng K (2017) Global overview of research and development of crop residue management machinery. Appl Eng Agric 33:329

    Google Scholar 

  67. Curvetto NR, Delmastro SE, Devalis RJ (1997) A low-cost method for decontaminating sunflower seed hull-based substrate in the cultivation of Pleurotus edible mushrooms. Mushroom Res 6:104–109

    Google Scholar 

  68. Curvetto N, Figlas D, Delmastro S (2002) Sunflower seed hulls as substrate for the cultivation of shiitake mushrooms. HortTechnol 12:652–655

    CAS  Google Scholar 

  69. Higgins C, Margot H, Warnquist S, Obeysekare E, Mehta K (2017) Mushroom cultivation in the developing world: a comparison of cultivation technologies. In: IEEE global humanitarian technology conference (GHTC), pp 1–7

    Google Scholar 

  70. Kurtzman Jr RH (2010) Pasteurization of mushroom substrate and other solids. Afr J Environ Sci Technol 4:936–941

    Google Scholar 

  71. Khonga EB, Khare KB, Jongman M (2013) Effect of different grain spawns and substrate sterilization methods on yield of oyster mushroom in Botswana. Int J Bioassays 2:1308–1311

    Google Scholar 

  72. Sánchez C (2004) Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64:756–762

    PubMed  Google Scholar 

  73. Robinson B, Winans K, Kendall A, Dlott J, Dlott F (2019) A life cycle assessment of Agaricus bisporus mushroom production in the USA. Int J Life Cycle Assess 24:456–467

    CAS  Google Scholar 

  74. Rodríguez Fajardo JR (2015) Implementación de cultivos inteligentes-monitoreo inalámbrico y automatización (Bachelor’s thesis, Uniandes)

    Google Scholar 

  75. Wahab H, Manap MZ, Pauline O, Ismon M, Zainulabidin MH, Noor FM, Mohamad Z (2019) Investigation of temperature and humidity control system for mushroom house. Int J Integr Eng 11:27–37

    Google Scholar 

  76. Sutherland LA (2010) Environmental grants and regulations in strategic farm business decision-making: a case study of attitudinal behaviour in Scotland. Land Use Policy 27:415–423

    Google Scholar 

  77. Wender MJ (2011) Goodbye family farms and hello agribusiness: the story of how agricultural policy is destroying the family farm and the environment. Vill Envtl LJ 22:141

    Google Scholar 

  78. Mahari WAW, Peng W, Nam WL, Yang H, Lee XY, Lee YK, Lam SS (2020) A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J Hazard Mater 400:123156

    Google Scholar 

  79. Vigneault C, Thompson J, Wu S, Hui KC, LeBlanc DI (2009) Transportation of fresh horticultural produce. Postharvest Technol Hort Crops 2:1–24

    Google Scholar 

  80. Pal A, Kant K (2017) A food transportation framework for an efficient and worker-friendly fresh food physical internet. Logistics 1(2):10

    Google Scholar 

  81. Larousse J (1979) Techniques of preserving edible mushrooms in France [brine, dehydration, freezing, canning]. Mushroom Sci:723–734

    Google Scholar 

  82. Chang ST, Wasser SP (2018) Current and future research trends in agricultural and biomedical applications of medicinal mushrooms and mushroom products. Int J Med Mushrooms 20:1121–1133

    PubMed  Google Scholar 

  83. Chang ST, Buswell JA (1999) Ganoderma lucidum (Curt.:Fr.) P karst. (Aphyllophoromycetideae) – a mushrooming medicinal mushroom. Int J Med Mushrooms 1:139–146

    Google Scholar 

  84. Bidegain MA, Palma SD, Cubitto MA (2020) Formulation and evaluation of a Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), nutraceutical Hydroalcoholic suspension. Int J Med Mushrooms 22:719–730

    PubMed  Google Scholar 

  85. Doherty B, Smith A, Parker S (2015) Fair trade market creation and marketing in the global Sout. Geoforum 67:158–171

    Google Scholar 

  86. WFTO. “About fair trade” (2011) www.wfto.com. Accessed 17 June 2011

  87. Ferchak JD, Croucher J (1996) Prospects and problems in commercialization of small scale mushroom production in South and South East Asia. In: Proceedings of second international conference on mushroom biology and mushroom products, pp 321–329

    Google Scholar 

  88. Sharma VP, Annepu SK, Gautam Y, Singh M, Kamal S (2017) Status of mushroom production in India. Mushroom Res 26:111–120

    Google Scholar 

  89. Zhang L, Sun X (2014) Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour Technol 171:274–284

    CAS  PubMed  Google Scholar 

  90. Wu Q, Xian Y, He Z, Zhang Q, Wu J, Yang G, Long L (2019) Adsorption characteristics of Pb (II) using biochar derived from spent mushroom substrate. Sci Rep 9:1–11

    Google Scholar 

  91. Meng X, Liu B, Xi C, Luo X, Yuan X, Wang X, Cui Z (2018) Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour Technol 251:22–30

    CAS  PubMed  Google Scholar 

  92. Ma Y, Shen Y, Liu Y (2020) Food waste to biofertilizer: a potential game changer of global circular agricultural economy. J Agric Food Chem 68:5021–5023

    CAS  PubMed  Google Scholar 

  93. Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H (2019) Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis. Renew Energy 143:64–76

    Google Scholar 

  94. Li J, Zhang J, Chen H, Chen X, Lan J, Liu C (2013) Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum. PLoS One 8:72038

    Google Scholar 

  95. Postemsky PD, Marinangeli PA, Curvetto NR (2016) Recycling of residual substrate from Ganoderma lucidum mushroom cultivation as biodegradable containers for horticultural seedlings. Sci Hortic 201:329–337

    Google Scholar 

  96. Postemsky PD, Bidegain MA, González-Matute R, Figlas ND, Cubitto MA (2017) Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. Bioresour Technol 231:85–93

    CAS  PubMed  Google Scholar 

  97. Picardi MS, González GH, Valls LB (2015) Aceite de oliva: el mercado mundial y el desempeño comercial de la argentina. Agroalimentaria 21:81–93

    Google Scholar 

  98. Loyd AL, Richter BS, Jusino MA, Truong C, Smith ME, Blanchette RA, Smith JA (2018) Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol 9:1–14

    Google Scholar 

  99. López Castro R, Delmastro S, Curvetto N (2008) Spent oyster mushroom substrate in a mix with organic soil for plant pot cultivation. Mic Apl Int 20:17–26

    Google Scholar 

  100. Postemsky PD, Curvetto NR (2015) Solid-state fermentation of cereal grains and sunflower seed hulls by Grifola gargal and Grifola sordulenta. Int Biodeter Biodegr 100:52–61

    CAS  Google Scholar 

  101. Postemsky PD, Delmastro SE, Curvetto NR (2014) Effect of edible oils and Cu (II) on the biodegradation of rice by-products by Ganoderma lucidum mushroom. Int Biodeter Biodegr 93:25–32

    CAS  Google Scholar 

  102. Postemsky PD, Bidegain MA, Lluberas G, Lopretti MI, Bonifacino S, Landache MI, Omarini AB (2019) Biorefining via solid-state fermentation of rice and sunflower by-products employing novel monosporic strains from Pleurotus sapidus. Bioresour Technol 289:121692

    CAS  PubMed  Google Scholar 

  103. Filippin AJ, Pozzi MT, Luna NS (2014) Subproductos del olivar y sus procesamientos para obtención de productos con valor agregado. V Jornadas de la Red VITEC. Libro de Resúmenes. Córdoba, Argentina, pp 1–9

    Google Scholar 

  104. Morillo JA, Antizar Ladislao B, Ramos-Cormenzana A, Russell NJ (2008) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol 82:25–39

    PubMed  Google Scholar 

  105. González Mateu M, Sydorenko O, Monetta P, Parodi E, Vázquez F, Correa OS (2013) Aplicación de alperujo en suelos bajo producción de olivos en San Juan-Argentina: su efecto sobre las comunidades microbianas edáficas. Aportes de la microbiología a la producción de cultivos:171–177

    Google Scholar 

  106. Cuestas JM, Gartner K, Postemsky PD, Saparrat MCN, Cubitto MA (2018) Análisis del uso potencial del residuo sólido de la producción de aceite de oliva en el cultivo de hongos ligninolíticos. I Convención Internacional para la producción de hongos comestibles y medicinales. III Jornadas Argentinas sobre Biología y Cultivo de Hongos Comestibles y Medicinales. VI Taller de Productores de Hongos Comestibles. III ExpoFungi Gourmet, Ecoparque, CABA, Argentina

    Google Scholar 

  107. Kamimura K, Kuboyama H, Yamamoto K (2012) Wood biomass supply costs and potential for biomass energy plants in Japan. Biomass Bioenergy 36:107–115

    Google Scholar 

  108. Nieto JI, Chegwin C (2010) Influencia del sustrato utilizado para el crecimiento de hongos comestibles sobre sus características nutraceúticas. Rev Col Biotec. ISSN: 0123-3475

    Google Scholar 

  109. Bidegain MA, Cubitto MA, Curvetto NR (2015) Optimization of the yield of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher basidiomycetes), cultivated on a sunflower seed Hull substrate produced in Argentina: effect of olive oil and copper. Int J Med Mushrooms 17:1095–1105

    PubMed  Google Scholar 

  110. Bidegain MA, Postemsky P, Pieroni O, Cubitto MA (2019) Analysis of the influence of substrate formulations on the bioactive chemical profile of Ganoderma lucidum (Agaricomycetes) by conventional and chemometrics methods. Int J Med Mushrooms 21:537–548

    PubMed  Google Scholar 

  111. Pika A, Buchmann T, Vermeulen B (2017) Biosimilars in Germany: the emergence of a new industry in the light of the varieties of capitalism approach. Technol Anal Strateg Manag 29:276–289

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the critical reading and data provided by Prof. Mg. Guillermo Morera (UdelaR, Sección Micología de Facultad de Ciencias, Montevideo, Uruguay), Mg Alejandra Barrios, Ing. Lic. Ramón López Castro, Mg. Gabriela Mockel, Dr. Diego Zappacosta (CERZOS-UNS/CONICET, Bahía Blanca, Argentina), Prof. Carlos Luisoni (Colegio de Abogados de Bahía Blanca, Argentina), Dra. Magalí Vercellino (Fundación para el Desarrollo Tecnológico, Argentina), Prof. Verónica Cesa (Instituto Nacional de Tecnología Industrial) and Dr. Francisco Kuhar (Instituto Multidisciplinario de Biología Vegetal-UNC/CONICET). This research was partially financed by the National Agency for Scientific and Technological Promotion (ANPCyT) Federal Council of Science and Technology (COFECYT) of the Ministry of Science, Technology and Productive Innovation through the PICT 2019-00207, CONICET (PUE INFIVE and PUE CERZOS), by the Secretary of Science and Technique of the National University of La Plata (Argentina), through the R&D Projects A344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximiliano Bidegain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Postemsky, P. et al. (2022). Mushroom Production in the Southern Cone of South America: Bioeconomy, Sustainable Development and Its Current Bloom. In: Berovic, M., Zhong, JJ. (eds) Biochemical Engineering and Biotechnology of Medicinal Mushrooms. Advances in Biochemical Engineering/Biotechnology, vol 184. Springer, Cham. https://doi.org/10.1007/10_2022_203

Download citation

Publish with us

Policies and ethics