Skip to main content

Bioprinting Technologies in Tissue Engineering

  • Chapter
  • First Online:
Current Applications of Pharmaceutical Biotechnology

Abstract

Bioprinting technology is a strong tool in producing living functional tissues and organs from cells, biomaterial-based bioinks, and growth factors in computer-controlled platform. The aim of this chapter is to present recent progresses in bioprinting of nerve, skin, cardiac, bone, cartilage, skeletal muscle, and other soft tissues and highlight the challenges in these applications. Various composite bioinks with bioactive ceramic-based scaffolds having patient-specific design and controlled micro-architectures were used at clinical and preclinical applications successfully for regeneration of bone. In nerve tissue engineering, bioprinting of alginate- and gelatin-based gel bioinks by extrusion presented a controllable 3D microstructures and showed satisfactory cytocompatibility and axonal regeneration. Bioprinting of cardiac progenitors in biopolymers resulted in limited success, while the use of bioinks from extracellular matrix induced satisfactory results in cardiac regeneration. Osteochondral scaffold bioprinting is challenging due to the complex hierarchical structure and limited chondral regeneration. Therefore, current approaches focused on osteochondral scaffold with vascular network and mimicking hierarchical structures. The applications of bioprinting in other types of tissues were also studied, and results showed significant potentials in regeneration of tissues such as cornea, liver, and urinary bladder.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sundaramurthi D, Rauf S, Hauser CAE (2016) 3D bioprinting technology for regenerative medicine applications. Int J Bioprinting 2:9–26. https://doi.org/10.18063/IJB.2016.02.010

    Article  CAS  Google Scholar 

  2. Mironov V, Reis N, Derby B (2006) Bioprinting: a beginning. Tissue Eng 12:631–634

    Article  Google Scholar 

  3. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174. https://doi.org/10.1016/j.biomaterials.2008.12.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groll J, Boland T, Blunk T, Burdick JA, Cho D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001. https://doi.org/10.1088/1758-5090/8/1/013001

    Article  CAS  PubMed  Google Scholar 

  5. Varkey M, Atala A (2018) Current challenges and future perspectives of bioprinting. In: Khademhosseini A, Camci-Unal G (eds) 3D bioprinting in regenerative engineering principles and applications. CRC Press, Boca Raton, pp 363–373

    Google Scholar 

  6. Vyas D, Udyawar D (2019) A review on current state of art of bioprinting. In: Kumar J, Pandey PM, Ian D (eds) 3D printing and additive manufacturing technologies. Springer, Singapore, pp 195–202

    Chapter  Google Scholar 

  7. U.S. Department of Health and Human Services (2018) Organ Procurement and Transplantation Network. https://optn.transplant.hrsa.gov/. Accessed 2 Dec 2018

  8. Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6. https://doi.org/10.1002/adhm.201601118

  9. Skardal A (2018) Principles and applications of bioprinting. In: Khademhosseini A, Camci-Unal G (eds) 3D bioprinting in regenerative engineering principles and applications. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  10. Swainson WK (1977) Method, medium and apparatus for producing three-dimensional figure product

    Google Scholar 

  11. Hull CW (1984) Apparatus for production of three-dimensional objects by stereolithography

    Google Scholar 

  12. Whitaker M (2014) The history of 3D printing in healthcare. Bull R Coll Surg Engl 96:228–229. https://doi.org/10.1308/147363514X13990346756481

    Article  Google Scholar 

  13. Su A, Al’Aref SJ (2018) Chapter 1 – History of 3D printing. Elsevier, Amsterdam

    Google Scholar 

  14. Wohlers T, Gornet T (2016) History of additive manufacturing. Wohlers Rep 24:118

    Google Scholar 

  15. Butt J, Shirvani H (2018) Additive, subtractive, and hybrid manufacturing processes. In: Bar-Cohen Y (ed) Advances in manufacturing and processing of materials and structures. CRC Press, Boca Raton, pp 187–218

    Chapter  Google Scholar 

  16. Jose RR, Rodriquez MJ, Dixon TA, Omenetto FG, Kaplan DL (2016) Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater Sci Eng 2:1662–1678. https://doi.org/10.1021/acsbiomaterials.6b00088

    Article  CAS  Google Scholar 

  17. Murphy K, Dorfman S, Smith N, Bauwens L, Sohn I, Mcdonald T, Leigh-Lancaster C, Law RJ (2012) Devices, systems, and methods for the fabrication of tissue, p 1

    Google Scholar 

  18. Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22:254–265. https://doi.org/10.1016/j.molmed.2016.01.003

    Article  PubMed  Google Scholar 

  19. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  20. Wilson WC, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 271:491–496. https://doi.org/10.1002/ar.a.10057

    Article  Google Scholar 

  21. Boland T, Wilson WC, Xu T (2006) Inkjet printing of viable cells. Biomaterials 26:93–99

    Google Scholar 

  22. Doyle K (2014) Bioprinting: from patches to parts. Genet Eng Biotechnol News 34:34–35. https://doi.org/10.1089/gen.34.10.02

    Article  Google Scholar 

  23. Tappa K, Jammalamadaka U (2018) Novel biomaterials used in medical 3D printing techniques. J Funct Biomater 9:17–33. https://doi.org/10.3390/jfb9010017

    Article  CAS  PubMed Central  Google Scholar 

  24. Zein I, Hutmacher DW, Cheng K, Hin S (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185

    Article  CAS  Google Scholar 

  25. Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 8:5834–5846. https://doi.org/10.3390/ma8095271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu W, Zhong Z, Hu N, Zhou Y, Maggio L, Miri A, Fragasso A, Jin X, Khademhosseini A, Zhang Y (2017) Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication 10:024102. https://doi.org/10.1088/1758-5090/aa9d44

    Article  CAS  Google Scholar 

  27. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–389

    Article  CAS  Google Scholar 

  28. Zhang B, Luo Y, Ma L, Gao L, Li Y, Xue Q, Yang H, Cui Z (2018) 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Des Manuf 1:2–13. https://doi.org/10.1007/s42242-018-0004-3

    Article  Google Scholar 

  29. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256. https://doi.org/10.1016/j.biomaterials.2010.05.055

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Zhang X, Gao G, Yonezawa T, Cui X (2017) 3D bioprinting and the current applications in tissue engineering. Biotechnol J 12:1600734. https://doi.org/10.1002/biot.201600734

    Article  CAS  Google Scholar 

  31. Ozbolat IT (2017) 3D bioprinting fundamentals, principles and applications. Elsevier, London

    Google Scholar 

  32. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10:1316–1322. https://doi.org/10.1089/ten.2004.10.1316

    Article  CAS  PubMed  Google Scholar 

  33. Ng WL, Goh MH, Yeong WY, Naing MW (2018) Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs. Biomater Sci 6:562–574. https://doi.org/10.1039/C7BM01015J

    Article  CAS  PubMed  Google Scholar 

  34. Agarwala S (2016) A perspective on 3D bioprinting technology: present and future. Am J Eng Appl Sci 9:985–990. https://doi.org/10.3844/ajeassp.2016.985.990

    Article  Google Scholar 

  35. Ng WL, Lee JM, Yeong WY, Win Naing M (2017) Microvalve-based bioprinting – process, bio-inks and applications. Biomater Sci 5:632–647. https://doi.org/10.1039/C6BM00861E

    Article  CAS  PubMed  Google Scholar 

  36. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5:326–333. https://doi.org/10.1002/adhm.201500677

    Article  CAS  PubMed  Google Scholar 

  37. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414. https://doi.org/10.1146/annurev-matsci-070909-104502

    Article  CAS  Google Scholar 

  38. Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84:116–121

    Google Scholar 

  39. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F (2016) 4D bioprinting for biomedical applications. Trends Biotechnol 34:746–756. https://doi.org/10.1016/j.tibtech.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  40. Ashammakhi N, Ahadian S, Zengjie F, Suthiwanich K, Lorestani F, Orive G, Ostrovidov S, Khademhosseini A (2018) Advances and future perspectives in 4D bioprinting. Biotechnol J 13:1–12. https://doi.org/10.1002/biot.201800148

    Article  CAS  Google Scholar 

  41. Zhu W, Webster TJ, Zhang LG (2019) 4D printing smart biosystems for nanomedicine. Nanomedicine 14:1643–1645. https://doi.org/10.2217/nnm-2019-0134

    Article  CAS  PubMed  Google Scholar 

  42. Yang GH, Yeo M, Koo YW, Kim GH (2019) 4D bioprinting: technological advances in biofabrication. Macromol Biosci 19:1800441. https://doi.org/10.1002/mabi.201800441

    Article  CAS  Google Scholar 

  43. Cidonio G, Glinka M, Dawson JI, Oreffo ROC (2019) The cell in the ink: improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials 209:10–24. https://doi.org/10.1016/j.biomaterials.2019.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Zhang YS, Akpek A, Shin SR, Khademhosseini A (2017) 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication 9:012001. https://doi.org/10.1088/1758-5090/9/1/012001

    Article  CAS  Google Scholar 

  45. Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 109:294–300. https://doi.org/10.1016/j.colsurfb.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  46. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int 2015:1–21. https://doi.org/10.1155/2015/729076

    Article  CAS  Google Scholar 

  47. Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281. https://doi.org/10.1016/j.ijbiomac.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  48. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3:278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  PubMed  Google Scholar 

  49. Pacifici A, Laino L, Gargari M, Guzzo F, Velandia Luz A, Polimeni A, Pacifici L (2018) Decellularized hydrogels in bone tissue engineering: a topical review. Int J Med Sci 15:492–497. https://doi.org/10.7150/ijms.22789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gilmore J, Burg T, Groff RE, Burg KJL (2017) Design and optimization of a novel bio-loom to weave melt-spun absorbable polymers for bone tissue engineering: design and optimization of a novel bio-loom. J Biomed Mater Res B Appl Biomater 105:1342–1351. https://doi.org/10.1002/jbm.b.33700

    Article  CAS  PubMed  Google Scholar 

  51. Ashammakhi N, Kaarela O (2017) Three-dimensional bioprinting can help bone. J Craniofac Surg 00:1. https://doi.org/10.1097/SCS.0000000000004143

    Article  Google Scholar 

  52. Zhang L, Yang G, Johnson BN, Jia X (2019) Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 84:16–33. https://doi.org/10.1016/j.actbio.2018.11.039

    Article  CAS  PubMed  Google Scholar 

  53. Demirtaş TT, Irmak G, Gümüşderelioğlu M (2017) Bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 9:035003. https://doi.org/10.1088/1758-5090/aa7b1d

    Article  CAS  PubMed  Google Scholar 

  54. Byambaa B, Annabi N, Yue K, Santiago GT, Alvarez MM, Jia W, Kazemzadeh-narbat M, Shin SR, Tamayol A, Khademhosseini A (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6:1700015. https://doi.org/10.1002/adhm.201700015

    Article  CAS  Google Scholar 

  55. Neufurth M, Wang X, Schröder HC, Feng Q, Diehl-Seifert B, Ziebart T, Steffen R, Wang S, Müller WEG (2014) Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials 35:8810–8819. https://doi.org/10.1016/j.biomaterials.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  56. Wenz A, Borchers K, Tovar GEM, Kluger PJ (2017) Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication 9:044103. https://doi.org/10.1088/1758-5090/aa91ec

    Article  CAS  PubMed  Google Scholar 

  57. Zhai X, Ruan C, Ma Y, Cheng D, Wu M, Liu W, Zhao X, Pan H, Lu WW (2018) 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv Sci 5:1700550. https://doi.org/10.1002/advs.201700550

    Article  CAS  Google Scholar 

  58. Ahlfeld T, Doberenz F, Kilian D, Vater C, Korn P, Lauer G, Lode A, Gelinsky M (2018) Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink. Biofabrication 10:045002. https://doi.org/10.1088/1758-5090/aad36d

    Article  CAS  PubMed  Google Scholar 

  59. Chen Y, Shen Y, Ho C, Yu J, Wu YA, Wang K, Shih C-T, Shie M-Y (2018) Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater Sci Eng C 91:679–687. https://doi.org/10.1016/j.msec.2018.06.005

    Article  CAS  Google Scholar 

  60. Murphy C, Kolan K, Li W, Semon J, Day D, Leu M (2017) 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for tissue engineering. Int J Bioprinting 3:53–63. https://doi.org/10.18063/ijb.2017.01.005

    Article  CAS  Google Scholar 

  61. Bendtsen ST, Wei M (2017) In vitro evaluation of 3D bioprinted tri-polymer network scaffolds for bone tissue regeneration. J Biomed Mater Res A 105:3262–3272. https://doi.org/10.1002/jbm.a.36184

    Article  CAS  PubMed  Google Scholar 

  62. Huang J, Fu H, Li C, Dai J, Zhang Z (2017) Recent advances in cell-laden 3D bioprinting: materials, technologies and applications. J 3D Print Med 1:245–268. https://doi.org/10.2217/3dp-2017-0010

    Article  CAS  Google Scholar 

  63. Neufurth M, Wang X, Wang S, Steffen R, Ackermann M, Haep ND, Schröder HC, Müller WEG (2017) 3D printing of hybrid biomaterials for bone tissue engineering: calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater 64:377–388. https://doi.org/10.1016/j.actbio.2017.09.031

    Article  CAS  PubMed  Google Scholar 

  64. Jeon HJ, Lee M, Yun S, Kang D, Park KH, Choi S, Choi E, Jin S, Shim JH, Yun WS, Yoon BJ, Park J (2019) Fabrication and characterization of 3D-printed biocomposite scaffolds based on PCL and silanated silica particles for bone tissue regeneration. Chem Eng J 360:519–530. https://doi.org/10.1016/j.cej.2018.11.176

    Article  CAS  Google Scholar 

  65. Aydogdu MO, Oner ET, Ekren N, Erdemir G, Kuruca SE, Yuca E, Bostan MS, Eroglu MS, Ikram F, Uzun M, Gunduz O (2019) Comparative characterization of the hydrogel added PLA/β-TCP scaffolds produced by 3D bioprinting. Bioprinting 13:e00046. https://doi.org/10.1016/j.bprint.2019.e00046

    Article  Google Scholar 

  66. Dong Y, Liang J, Cui Y, Xu S, Zhao N (2018) Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: combined the sol-gel method with 3D plotting technique. Carbohydr Polym 197:183–193. https://doi.org/10.1016/j.carbpol.2018.05.086

    Article  CAS  PubMed  Google Scholar 

  67. Wang J, Yang M, Zhu Y, Wang L, Tomsia AP, Mao C (2014) Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv Mater 26:4961–4966. https://doi.org/10.1002/adma.201400154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu J, Li L, Suo H, Yan M, Yin J, Fu J (2019) 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater Des 171:107708. https://doi.org/10.1016/j.matdes.2019.107708

    Article  CAS  Google Scholar 

  69. Du Y, Liu H, Yang Q, Wang S, Wang J, Ma J, Noh I, Mikos AG, Zhang S (2017) Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137:37–48. https://doi.org/10.1016/j.biomaterials.2017.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Correia CR, Reis RL, Mano JF (2015) Multiphasic, multistructured and hierarchical strategies for cartilage regeneration. In: Bertassoni LE, Coelho PG (eds) Engineering mineralized and load bearing tissues. Springer, Cham, pp 143–160

    Chapter  Google Scholar 

  71. Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22. https://doi.org/10.1016/j.biomaterials.2016.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen L, Deng C, Li J, Yao Q, Chang J, Wang L, Wu C (2019) 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials 196:138–150. https://doi.org/10.1016/j.biomaterials.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  73. Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW, Fisher JP, Mikos AG (2019) Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater 90:37–48. https://doi.org/10.1016/j.actbio.2019.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li Z, Jia S, Xiong Z, Long Q, Yan S, Hao F, Liu J, Yuan Z (2018) 3D-printed scaffolds with calcified layer for osteochondral tissue engineering. J Biosci Bioeng 126:389–396. https://doi.org/10.1016/j.jbiosc.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  75. Rajzer I, Kurowska A, Jabłoński A, Jatteau S, Śliwka M, Ziąbka M, Menaszek E (2018) Layered gelatin/PLLA scaffolds fabricated by electrospinning and 3D printing- for nasal cartilages and subchondral bone reconstruction. Mater Des 155:297–306. https://doi.org/10.1016/j.matdes.2018.06.012

    Article  CAS  Google Scholar 

  76. Daly AC, Kelly DJ (2019) Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197:194–206. https://doi.org/10.1016/j.biomaterials.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  77. Deng C, Yang Q, Sun X, Chen L, Feng C, Chang J, Wu C (2018) Bioactive scaffolds with Li and Si ions-synergistic effects for osteochondral defects regeneration. Appl Mater Today 10:203–216. https://doi.org/10.1016/j.apmt.2017.12.010

    Article  Google Scholar 

  78. Di Bella C, Duchi S, O’Connell CD, Blanchard R, Augustine C, Yue Z, Thompson F, Richards C, Beirne S, Onofrillo C, Bauquier SH, Ryan SD, Pivonka P, Wallace GG, Choong PF (2018) In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med 12:611–621. https://doi.org/10.1002/term.2476

    Article  CAS  PubMed  Google Scholar 

  79. Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M, Lindahl A, Gatenholm P, Enejder A, Simonsson S (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7:658. https://doi.org/10.1038/s41598-017-00690-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuo C-Y, Wilson E, Fuson A, Gandhi N, Monfaredi R, Jenkins A, Romero M, Santoro M, Fisher JP, Cleary K, Reilly B (2018) Repair of tympanic membrane perforations with customized bioprinted ear grafts using chinchilla models. Tissue Eng Part A 24:527–535. https://doi.org/10.1089/ten.tea.2017.0246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thayer PS, Orrhult LS, Martínez H (2018) Bioprinting of cartilage and skin tissue analogs utilizing a novel passive mixing unit technique for bioink precellularization. J Vis Exp 131:56372. https://doi.org/10.3791/56372

    Article  CAS  Google Scholar 

  82. Zhu W, Cui H, Boualam B, Masood F, Flynn E, Rao RD, Zhang Z-Y, Zhang LG (2018) 3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering. Nanotechnology 29:185101. https://doi.org/10.1088/1361-6528/aaafa1

    Article  CAS  PubMed  Google Scholar 

  83. Potjewyd G, Moxon S, Wang T, Domingos M, Hooper NM (2018) Tissue engineering 3D neurovascular units: a biomaterials and bioprinting perspective. Trends Biotechnol 36:457–472. https://doi.org/10.1016/j.tibtech.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  84. Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM (2018) Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials 186:44–63. https://doi.org/10.1016/j.biomaterials.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  85. Knowlton S, Anand S, Shah T, Tasoglu S (2018) Bioprinting for neural tissue engineering. Trends Neurosci 41:31–46. https://doi.org/10.1016/j.tins.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  86. Naghieh S, Sarker MD, Abelseth E, Chen X (2019) Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J Mech Behav Biomed Mater 93:183–193. https://doi.org/10.1016/j.jmbbm.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  87. Sarker MD, Naghieh S, McInnes AD, Ning L, Schreyer DJ, Chen X (2019) Bio-fabrication of peptide-modified alginate scaffolds: printability, mechanical stability and neurite outgrowth assessments. Bioprinting 14:e00045. https://doi.org/10.1016/j.bprint.2019.e00045

    Article  Google Scholar 

  88. Ning L, Sun H, Lelong T, Guilloteau R, Zhu N, Schreyer DJ, Chen X (2018) 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication 10:035014. https://doi.org/10.1088/1758-5090/aacd30

    Article  CAS  PubMed  Google Scholar 

  89. Li X, Wang X, Wang X, Chen H, Zhang X, Zhou L, Xu T (2018) 3D bioprinted rat Schwann cell-laden structures with shape flexibility and enhanced nerve growth factor expression. 3 Biotech 8:342. https://doi.org/10.1007/s13205-018-1341-9

    Article  PubMed  PubMed Central  Google Scholar 

  90. England S, Rajaram A, Schreyer DJ, Chen X (2017) Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration. Bioprinting 5:1–9. https://doi.org/10.1016/j.bprint.2016.12.001

    Article  Google Scholar 

  91. Joung D, Truong V, Neitzke CC, Guo S-Z, Walsh PJ, Monat JR, Meng F, Park SH, Dutton JR, Parr AM, McAlpine MC (2018) 3D printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv Funct Mater 28:1801850. https://doi.org/10.1002/adfm.201801850

    Article  CAS  Google Scholar 

  92. Hsieh F-Y, Lin H-H, Hsu S (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57. https://doi.org/10.1016/j.biomaterials.2015.08.028

    Article  CAS  PubMed  Google Scholar 

  93. Zhu W, Tringale KR, Woller SA, You S, Johnson S, Shen H, Schimelman J, Whitney M, Steinauer J, Xu W, Yaksh TL, Nguyen QT, Chen S (2018) Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Mater Today 21:951–959. https://doi.org/10.1016/j.mattod.2018.04.001

    Article  CAS  Google Scholar 

  94. Donderwinkel I, van Hest JCM, Cameron NR (2017) Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 8:4451–4471. https://doi.org/10.1039/C7PY00826K

    Article  CAS  Google Scholar 

  95. Tao J, Zhang J, Du T, Xu X, Deng X, Chen S, Liu J, Chen Y, Liu X, Xiong M, Luo Y, Cheng H, Mao J, Cardon L, Gou M, Wei Y (2019) Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater 90:49–59. https://doi.org/10.1016/j.actbio.2019.03.047

    Article  CAS  PubMed  Google Scholar 

  96. Zhou X, Cui H, Nowicki M, Miao S, Lee S-J, Masood F, Harris BT, Zhang LG (2018) Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Appl Mater Interfaces 10:8993–9001. https://doi.org/10.1021/acsami.7b18197

    Article  CAS  PubMed  Google Scholar 

  97. Vijayavenkataraman S, Lu WF, Fuh JYH (2016) 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 8:032001. https://doi.org/10.1088/1758-5090/8/3/032001

    Article  CAS  PubMed  Google Scholar 

  98. Gholami P, Ahmadi-pajouh MA, Abolftahi N, Hamarneh G, Kayvanrad M (2018) Segmentation and measurement of chronic wounds for bioprinting. IEEE J Biomed Health Inform 22:1269–1277. https://doi.org/10.1109/JBHI.2017.2743526

    Article  PubMed  Google Scholar 

  99. Min D, Lee W, Bae I-H, Lee TR, Croce P, Yoo S-S (2018) Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol 27:453–459. https://doi.org/10.1111/exd.13376

    Article  CAS  PubMed  Google Scholar 

  100. Ng WL, Qi JTZ, Yeong WY, Naing MW (2018) Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication 10:025005. https://doi.org/10.1088/1758-5090/aa9e1e

    Article  CAS  PubMed  Google Scholar 

  101. Albanna M, Binder KW, Murphy SV, Kim J, Qasem SA, Zhao W, Tan J, El-Amin IB, Dice DD, Marco J, Green J, Xu T, Skardal A, Holmes JH, Jackson JD, Atala A, Yoo JJ (2019) In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep 9:1856. https://doi.org/10.1038/s41598-018-38366-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim BS, Gao G, Kim JY, Cho D (2019) 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv Healthc Mater 8:1801019. https://doi.org/10.1002/adhm.201801019

    Article  CAS  Google Scholar 

  103. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855–1863. https://doi.org/10.1002/bit.24455

    Article  CAS  PubMed  Google Scholar 

  104. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Trans Med 1:792–802. https://doi.org/10.5966/sctm.2012-0088

    Article  CAS  Google Scholar 

  105. Augustine R (2018) Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Prog Biomater 7:77–92. https://doi.org/10.1007/s40204-018-0087-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yan W-C, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JYH, Robinson KS, Wang C-H (2018) 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Adv Drug Deliv Rev 132:270–295. https://doi.org/10.1016/j.addr.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  107. El-Serafi AT, El-Serafi IT, Elmasry M, Steinvall I, Sjöberg F (2017) Skin regeneration in three dimensions, current status, challenges and opportunities. Differentiation 96:26–29. https://doi.org/10.1016/j.diff.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  108. Ng WL, Wang S, Yeong WY, Naing MW (2016) Skin bioprinting: impending reality or fantasy? Trends Biotechnol 34:689–699. https://doi.org/10.1016/j.tibtech.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  109. Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS (2018) Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthet Surg 71:615–623. https://doi.org/10.1016/j.bjps.2017.12.006

    Article  PubMed  Google Scholar 

  110. Vidal Yucha SE, Tamamoto KA, Nguyen H, Cairns DM, Kaplan DL (2019) Human skin equivalents demonstrate need for neuro-immuno-cutaneous system. Adv Biosyst 3:1800283. https://doi.org/10.1002/adbi.201800283

    Article  CAS  Google Scholar 

  111. Adams SD, Ashok A, Kanwar RK, Kanwar JR, Kouzani AZ (2017) Integrated 3D printed scaffolds and electrical stimulation for enhancing primary human cardiomyocyte cultures. Bioprinting 6:18–24. https://doi.org/10.1016/j.bprint.2017.04.003

    Article  Google Scholar 

  112. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P, Wang F, Chichkov B, Li W, Steinhoff G (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230. https://doi.org/10.1016/j.biomaterials.2011.08.071

    Article  CAS  PubMed  Google Scholar 

  113. Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME (2018) UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng Part C Methods 24:74–88. https://doi.org/10.1089/ten.tec.2017.0346

    Article  CAS  PubMed  Google Scholar 

  114. Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, Kim SW, Kwon S-M, Kim P-J, Cho D-W (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274. https://doi.org/10.1016/j.biomaterials.2016.10.026

    Article  CAS  PubMed  Google Scholar 

  115. Liu J, He J, Liu J, Ma X, Chen Q, Lawrence N, Zhu W, Xu Y, Chen S (2019) Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting 13:e00040. https://doi.org/10.1016/j.bprint.2019.e00040

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli GF, Hibino N (2017) Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep 7:4566. https://doi.org/10.1038/s41598-017-05018-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang Z, Lee SJ, Cheng H-J, Yoo JJ, Atala A (2018) 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 70:48–56. https://doi.org/10.1016/j.actbio.2018.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Choi Y-J, Jun Y-J, Kim DY, Yi H-G, Chae S-H, Kang J, Lee J, Gao G, Kong J-S, Jang J, Chung WK, Rhie J-W, Cho D-W (2019) A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials 206:160–169. https://doi.org/10.1016/j.biomaterials.2019.03.036

    Article  CAS  PubMed  Google Scholar 

  119. Costantini M, Testa S, Mozetic P, Barbetta A, Fuoco C, Fornetti E, Tamiro F, Bernardini S, Jaroszewicz J, Święszkowski W, Trombetta M, Castagnoli L, Seliktar D, Garstecki P, Cesareni G, Cannata S, Rainer A, Gargioli C (2017) Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 131:98–110. https://doi.org/10.1016/j.biomaterials.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  120. Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188. https://doi.org/10.1016/j.biomaterials.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  121. Pati F, Ha D-H, Jang J, Han HH, Rhie J-W, Cho D-W (2015) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175. https://doi.org/10.1016/j.biomaterials.2015.05.043

    Article  CAS  PubMed  Google Scholar 

  122. Grix T, Ruppelt A, Thomas A, Amler A-K, Noichl B, Lauster R, Kloke L (2018) Bioprinting perfusion-enabled liver equivalents for advanced organ-on-a-chip applications. Genes 9:176. https://doi.org/10.3390/genes9040176

    Article  CAS  PubMed Central  Google Scholar 

  123. Hiller T, Berg J, Elomaa L, Röhrs V, Ullah I, Schaar K, Dietrich A-C, Al-Zeer M, Kurtz A, Hocke A, Hippenstiel S, Fechner H, Weinhart M, Kurreck J (2018) Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int J Mol Sci 19:3129. https://doi.org/10.3390/ijms19103129

    Article  CAS  PubMed Central  Google Scholar 

  124. Imamura T, Shimamura M, Ogawa T, Minagawa T, Nagai T, Silwal Gautam S, Ishizuka O (2018) Biofabricated structures reconstruct functional urinary bladders in radiation-injured rat bladders. Tissue Eng Part A 24:1574–1587. https://doi.org/10.1089/ten.tea.2017.0533

    Article  CAS  PubMed  Google Scholar 

  125. Isaacson A, Swioklo S, Connon CJ (2018) 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 173:188–193. https://doi.org/10.1016/j.exer.2018.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kang K, Kim Y, Jeon H, Lee SB, Kim JS, Park SA, Kim WD, Yang HM, Kim SJ, Jeong J, Choi D (2018) Three-dimensional bioprinting of hepatic structures with directly converted hepatocyte-like cells. Tissue Eng Part A 24:576–583. https://doi.org/10.1089/ten.tea.2017.0161

    Article  CAS  PubMed  Google Scholar 

  127. Kim KW, Lee SJ, Park SH, Kim JC (2018) Ex vivo functionality of 3D bioprinted corneal endothelium engineered with ribonuclease 5-overexpressing human corneal endothelial cells. Adv Healthc Mater 7:1800398. https://doi.org/10.1002/adhm.201800398

    Article  CAS  Google Scholar 

  128. Madden LR, Nguyen TV, Garcia-Mojica S, Shah V, Le AV, Peier A, Visconti R, Parker EM, Presnell SC, Nguyen DG, Retting KN (2018) Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox functions. iScience 2:156–167. https://doi.org/10.1016/j.isci.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shi P, Tan YSE, Yeong WY, Li HY, Laude A (2018) A bilayer photoreceptor-retinal tissue model with gradient cell density design: a study of microvalve-based bioprinting. J Tissue Eng Regen Med 12:1297–1306. https://doi.org/10.1002/term.2661

    Article  CAS  PubMed  Google Scholar 

  130. Sorkio A, Koch L, Koivusalo L, Deiwick A, Miettinen S, Chichkov B, Skottman H (2018) Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 171:57–71. https://doi.org/10.1016/j.biomaterials.2018.04.034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Türker Baran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yilmaz, B., Tahmasebifar, A., Baran, E.T. (2019). Bioprinting Technologies in Tissue Engineering. In: Silva, A.C., Moreira, J.N., Lobo, J.M.S., Almeida, H. (eds) Current Applications of Pharmaceutical Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 171. Springer, Cham. https://doi.org/10.1007/10_2019_108

Download citation

Publish with us

Policies and ethics