Skip to main content

Specific Cell (Re-)Programming: Approaches and Perspectives

  • Chapter
  • First Online:
Engineering and Application of Pluripotent Stem Cells

Abstract

Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.

It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

(±)-BayK-8644:

Ca2+ channel agonist

A83-01:

TGF-β inhibitor

AA:

Ascorbic acid

ACTN2:

α-Actinin

ADSC:

Adipose tissue-derived mesenchymal stem cell

AFP:

α-Fetoprotein

Akt1:

AKT serine/threonine kinase 1

ALB:

Albumin

ALK5:

TGFβ type I receptor kinase

ALP:

Alkaline phosphatase

ANF:

NPPA, natriuretic peptide A

APD:

Action potential duration

APOA1:

Apolipoprotein A1

AS8351:

Iron chelator

ASC:

Adult stem cell

Ascl1:

Achaete-scute homolog 1

ATF5:

Activating transcription factor 5

ATSC:

Adipose tissue-derived mesenchymal stem cells

AV:

Atrioventricular

Bcl2:

B-cell lymphoma 2

BCT:

Bioartificial cardiac tissue

bFGF:

Basic fibroblast growth factor

bHLH:

Basic helix-loop-helix

BIO:

6-Bromoindirubin-3′-oxime, canonical Wnt activator

BIX01294:

Diazepin-quinazolinamine derivative; histone-lysine methyltransferase inhibitor

Bmi1:

BMI1 proto-oncogene, polycomb ring finger

BM-MSC:

Bone marrow-derived mesenchymal stem cell

bpm:

Beats per minute

Bry:

Brachyury

CD166:

ALCAM; activated leukocyte cell adhesion molecule

CEBPA:

CCAAT/enhancer binding protein alpha

CF:

Cardiac fibroblast

CHD:

Congenital heart defect

CHIR:

CHIR99021, GSK-3 inhibitor, Wnt activator

CM:

Cardiomyocyte

C-MYC:

MYC proto-oncogene, bHLH transcription factor

CPC:

Cardiac progenitor cell

CRM:

Cardiac reprogramming medium

CS:

Conduction system

CT99021:

SHH and the GSK3β inhibitor

cTnI:

Troponin I3, cardiac type

cTnT:

Troponin T2, cardiac type

Cx:

Gap junction protein

CYP:

Cytochrome P450

DAPT:

N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester

DCX:

Newborn neuron

DES:

Desmin

DF:

Dermal fibroblast

DFSC:

Dental follicular-derived mesenchymal stem cell

DLX1:

Distal-less homeobox

DMEM/F12:

Dulbecco’s modified eagle medium: nutrient mixture F-12

DMD:

Dystrophin

EAD:

Early after depolarizations

EBIO:

1-EBIO; KCa2/3 channel activator

EGF:

Epidermal growth factor

EPC:

Endothelial progenitor cell

EPDC:

Epicardium-derived cell

ESC:

Embryonic stem cell

FFV:

FGF2, FGF10 & VEGF

FGF:

Fibroblast growth factor

FHF:

First heart field

FLF:

Fetal limb fibroblast

forskolin:

Adenylyl cyclase activator

FOX:

Forkhead box

GABA:

Gamma-aminobutyric acid

GAD67:

Glutamate decarboxylase 1

Gata4:

GATA binding protein 4

GF:

Gingival fibroblast

Glut2:

SLC2A2; solute carrier family 2 member 2

GMT:

Gata4, Mef2c & Tbx5

GMTH:

Gata4, Mef2c, Tbx5 & Hand2

GO6983:

PKC inhibitor

GSK126:

Selective EZH2 methyltransferase inhibitor

Hand2:

Heart and neural crest derivatives expressed 2

HC:

Hepatocytes

hCMVEC:

Human cardiac microvascular endothelial cell

HCN:

Hyperpolarization-activated cyclic nucleotide channel

hEF:

Human embryonic fibroblast

HFF:

Human foreskin fibroblast

hiPSC-ECM:

Induced pluripotent stem cell-derived embryonic cardiac myocyte

HNF:

Hepatic nuclear factor

I-BET151:

Bromodomain and extra-terminal domain family inhibitor

If:

Funny current

iPSC:

Induced pluripotent stem cell

Isl1:

ISL LIM homeobox 1

ISX9:

Neurogenesis inducer

ITS:

Insulin-transferrin-selenium

JAK inhibitor I:

Janus-Associated Kinase Inhibitor I

JNJ10198409:

ATP-competitive inhibitor of platelet-derived growth Factor receptor tyrosine kinase

JNK:

C-Jun N-terminal kinases

KLF4:

Kruppel like factor 4

LDL:

Low-density lipoprotein

LDN193189:

BMP4 inhibitor

LF:

Lung fibroblast

Lhx6:

LIM homeobox protein 6

LIF:

Leukemia inhibiting factor, JAK/STAT activator

LMX1A:

LIM homeobox transcription factor 1 alpha

L-MYC:

MYCL proto-oncogene, bHLH transcription factor

lncRNA:

Long noncoding RNA

LVEF:

Left ventricular ejection fraction

Ly294002:

Phosphoinositide 3-kinase (PI3K) inhibitor, TGF-β activator

MafA:

v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A

Map2:

Microtubule-associated protein 2

MAPK:

Mitogen-activated protein kinase 1

MEF:

Mouse embryonic fibroblast

Mef2c:

Myocyte enhancer factor 2C

MF:

Myofibroblast

Mhc:

Myosin heavy chain

MI:

Myocardial infarction

miR:

microRNA

MLC2v:

Myosin, light polypeptide 2, regulatory, cardiac, slow

MM3-GHT:

Combination of Gata4, Hand2, Tbx5, and the fusion gene MM3 between Mef2c and the transactivation domain of MyoD

MRI:

Magnet resonance imaging

MSC:

Mesenchymal stem cell

MYH3:

Embryonic myosin

MYH6:

Myosin heavy chain 6, cardiac muscle, alpha

MyHC:

Myosin heavy chain 6

MyoD:

Myogenic differentiation 1

MYOG:

Myogenin

MYT1L:

Myelin transcription factor 1 like

N2:

Cysteine proteinase inhibitor

NeuN:

Neuronal nuclei

NeuroD1:

Neurogenic differentiation 1

NEUROD2:

Neuronal differentiation 2

NFF:

Neonatal foreskin fibroblast

NG2:

Oligodendrocyte precursor

Ngn:

Neurogenin

NKX:

Homeobox protein

NMDA:

N-Methyl-d-aspartate

NNCF:

Neonatal cardiac fibroblast

NNF:

Neonatal fibroblast

NRVM:

Neonatal rat ventricular myocyte

NURR1:

Nuclear receptor related 1 protein

OAC2:

Oct4-activating compound 2

OB:

Osteoblast

OC:

Osteocyte

OCT4:

POU class 5 homeobox 1

PC:

Pacemaker cell

PD0325901:

MEK1/2 inhibitor

Pdx1:

Insulin promoter factor 1

pkc:

Protein kinase C

PM:

Pacemaker

PROX1:

prospero homeobox 1

PSC:

Pluripotent stem cell

Purmo:

Purmorphamine

PV:

Parvalbumin

Repsox:

Inhibitor of the TGF-β type 1 receptor

ROCK:

Rho-associated protein kinase

RUNX2:

Runt related transcription factor 2

Ryr2:

Ryanodine receptor 2

SAG:

Smoothened agonist

SAN:

Sinoatrial node

SB431542:

TGF-β inhibitor

SC:

Stem cell

SC1:

Pluripotin, dual selective inhibitor of the ERK1 and Ras-GAP signaling pathways

SCD:

Sudden cardiac death

SCN5A:

Sodium channel, voltage-gated, type V, alpha subunit

SERPINA1:

Serpin family A member 1

SHF:

Second heart field

SHH:

Sonic hedgehog

Shox2:

Short stature homeobox 2

shRNA:

Small hairpin RNA

siRNA:

Small interfering RNA

SIRPA:

Signal regulatory protein alpha

SLC1A2:

Solute carrier family 1 member 2

Sox:

Sex determining region Y-box 2

SP600125:

JNK inhibitor

SR-3677:

ROCK inhibitor

SSS:

Sick sinus syndrome

STAT3:

Signal transducer and activator of transcription 3

SU16F:

Platelet-derived growth factor receptor β inhibitor

SV40:

Simian vacuolating virus 40

Tbx:

T-box factor 18

TF:

Transcription factor

TGF-β:

Transforming growth factor-β

THF:

Tertiary heart field

Tnnt2:

Troponin T2, cardiac type

TTF:

Tail tip fibroblast

TTNPB:

Analog of retinoic acid

TUBB3:

β-III-tubulin

Tuj1:

Neuron-specific class III beta-tubulin

Tzv:

Thiazovivin

UNC0638:

Histone methyltransferase inhibitor

VEGF:

Vascular endothelial growth factor

VGLUT1:

Vesicular glutamate transporter 1

VPA:

Valporic acid

XAV939:

Wnt inhibitor

Y-27632:

ROCK inhibitor

α-MHC:

Myosin heavy chain 6

βMe:

β-Mercaptoethanol

References

  1. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  CAS  Google Scholar 

  2. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park S-Y et al (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110:1446–1451

    Article  CAS  Google Scholar 

  3. World Health Organization (WHO) The top 10 causes of death 2015. www.who.int/mediacentre/factsheets/fs310/en

  4. Eurotransplant (2015) Annual Report 2015. Eurotransplant International Foundation, Leiden. Available at https://www.eurotransplant.org/cms/mediaobject.php?file=AR_ET_20153.pdf

    Google Scholar 

  5. Jain A, Bansal R (2015) Applications of regenerative medicine in organ transplantation. J Pharm Bioallied Sci 7:188–194

    Article  CAS  Google Scholar 

  6. Heidary Rouchi A, Mahdavi-Mazdeh M (2015) Regenerative medicine in organ and tissue transplantation: shortly and practically achievable? Int J Organ Transplant Med 6:93–98

    CAS  Google Scholar 

  7. Orlando G, Soker S, Stratta RJ, Atala A (2013) Will regenerative medicine replace transplantation? Cold Spring Harb Perspect Med 3:a015693

    Article  Google Scholar 

  8. Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marbán E (2014) Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll Cardiol 64:922–937

    Article  Google Scholar 

  9. Pavo N, Charwat S, Nyolczas N, Jakab A, Murlasits Z, Bergler-Klein J et al (2014) Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences. J Mol Cell Cardiol 75:12–24

    Article  CAS  Google Scholar 

  10. Matar AA, Chong JJ (2014) Stem cell therapy for cardiac dysfunction. SpringerPlus 3:440

    Article  CAS  Google Scholar 

  11. de Feo D, Merlini A, Laterza C, Martino G (2012) Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr Opin Neurol 25:322–333

    Article  CAS  Google Scholar 

  12. Mothe AJ, Tator CH (2013) Review of transplantation of neural stem/progenitor cells for spinal cord injury. Int J Dev Neurosci 31:701–713

    Article  CAS  Google Scholar 

  13. Stamm C, Kleine H-D, Choi Y-H, Dunkelmann S, Lauffs J-A, Lorenzen B et al (2007) Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 133:717–725

    Article  Google Scholar 

  14. Wang Z, Wang L, Su X, Pu J, Jiang M, He B (2017) Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 8:21

    Article  Google Scholar 

  15. Beck S, Lee B-K, Kim J (2015) Multi-layered global gene regulation in mouse embryonic stem cells. Cell Mol Life Sci 72:199–216

    Article  CAS  Google Scholar 

  16. Molofsky AV, Pardal R, Morrison SJ (2004) Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 16:700–707

    Article  CAS  Google Scholar 

  17. Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells (Dayton, Ohio) 19:193–204

    Article  CAS  Google Scholar 

  18. Draper JS, Fox V (2003) Human embryonic stem cells: multilineage differentiation and mechanisms of self-renewal. Arch Med Res 34:558–564

    Article  CAS  Google Scholar 

  19. Trounson A, DeWitt ND (2016) Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17:194–200

    Article  CAS  Google Scholar 

  20. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  21. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  22. Segers VFM, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  CAS  Google Scholar 

  23. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S et al (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112:523–533

    Article  CAS  Google Scholar 

  24. Wesselschmidt RL (2011) The teratoma assay: an in vivo assessment of pluripotency. Methods Mol Biol (Clifton, NJ) 767:231–241

    Article  CAS  Google Scholar 

  25. Nelakanti RV, Kooreman NG, Wu JC (2015) Teratoma formation: a tool for monitoring pluripotency in stem cell research. Curr Protoc Stem Cell Biol 32:4A.8.1–4A.817

    Article  Google Scholar 

  26. Kamakura T, Makiyama T, Sasaki K, Yoshida Y, Wuriyanghai Y, Chen J et al (2013) Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J 77:1307–1314

    Article  CAS  Google Scholar 

  27. Panopoulos AD, Ruiz S, Belmonte JCI (2011) iPSCs: induced back to controversy. Cell Stem Cell 8:347–348

    Article  CAS  Google Scholar 

  28. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell Press 51:987–1000

    CAS  Google Scholar 

  29. Li X, Liu D, Ma Y, Du X, Jing J, Wang L et al (2017) Direct reprogramming of fibroblasts via a chemically induced XEN-like state. Cell Stem Cell. https://doi.org/10.1016/j.stem.2017.05.019

  30. Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R et al (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8:e1000373

    Article  CAS  Google Scholar 

  31. Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227

    Article  CAS  Google Scholar 

  32. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231

    Article  CAS  Google Scholar 

  33. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14:188–202

    Article  CAS  Google Scholar 

  34. Colasante G, Lignani G, Rubio A, Medrihan L, Yekhlef L, Sessa A et al (2015) Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell 17:719–734

    Article  CAS  Google Scholar 

  35. Zhang L, Yin J-C, Yeh H, Ma N-X, Lee G, Chen XA et al (2015) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17:735–747

    Article  CAS  Google Scholar 

  36. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D et al (2015) Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17:195–203

    Article  CAS  Google Scholar 

  37. Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W et al (2015) Direct conversion of normal and alzheimer?: S disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17:204–212

    Article  CAS  Google Scholar 

  38. He S, Guo Y, Zhang Y, Li Y, Feng C, Li X et al (2015) Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. Cell Regen (London, England) 4:12

    Google Scholar 

  39. Di Rivetti Val Cervo P, Romanov RA, Spigolon G, Masini D, Martín-Montañez E, Toledo EM et al (2017) Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnol 35:444–452

    Article  CAS  Google Scholar 

  40. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C et al (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475:386–389

    Article  CAS  Google Scholar 

  41. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z et al (2014) Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14:370–384

    Article  CAS  Google Scholar 

  42. Du Y, Wang J, Jia J, Song N, Xiang C, Xu J et al (2014) Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 14:394–403

    Article  CAS  Google Scholar 

  43. Simeonov KP, Uppal H (2014) Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PLoS One 9:e100134

    Article  CAS  Google Scholar 

  44. Kim J, Kim K-P, Lim KT, Lee SC, Yoon J, Song G et al (2015) Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci Rep 5:15706

    Article  CAS  Google Scholar 

  45. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H-C, Yang D et al (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18:797–808

    Article  CAS  Google Scholar 

  46. Rezvani M, Español-Suñer R, Malato Y, Dumont L, Grimm AA, Kienle E et al (2016) In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18:809–816

    Article  CAS  Google Scholar 

  47. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    Article  CAS  Google Scholar 

  48. Cavelti-Weder C, Li W, Weir GC, Zhou Q (2014) Direct lineage conversion of pancreatic exocrine to endocrine Beta cells in vivo with defined factors. Methods Mol Biol (Clifton, NJ) 1150:247–262

    Article  CAS  Google Scholar 

  49. Banga A, Akinci E, Greder LV, Dutton JR, Slack JMW (2012) In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci U S A 109:15336–15341

    Article  CAS  Google Scholar 

  50. Lemper M, Leuckx G, Heremans Y, German MS, Heimberg H, Bouwens L et al (2015) Reprogramming of human pancreatic exocrine cells to β-like cells. Cell Death Differ 22:1117–1130

    Article  CAS  Google Scholar 

  51. Zhu S, Russ HA, Wang X, Zhang M, Ma T, Xu T et al (2016) Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 7:10080

    Article  CAS  Google Scholar 

  52. Yang X-F, Ren L-W, Yang L, Deng C-Y, Li F-R (2017) In vivo direct reprogramming of liver cells to insulin producing cells by virus-free overexpression of defined factors. Endocr J 64:291–302

    Article  Google Scholar 

  53. Yamamoto K, Kishida T, Sato Y, Nishioka K, Ejima A, Fujiwara H et al (2015) Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci U S A 112:6152–6157

    Article  CAS  Google Scholar 

  54. Li Y, Wang Y, Yu J, Ma Z, Bai Q, Wu X et al (2017) Direct conversion of human fibroblasts into osteoblasts and osteocytes with small molecules and a single factor, Runx2. doi: 10.1101/127480

    Google Scholar 

  55. Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  Google Scholar 

  56. Hausburg F, Naß S, Voronina N, Skorska A, Müller P, Steinhoff G et al (2015) Defining optimized properties of modified mRNA to enhance virus- and DNA- independent protein expression in adult stem cells and fibroblasts. Cell Physiol Biochem 35:1360–1371

    Article  CAS  Google Scholar 

  57. Bichsel C, Neeld D, Hamazaki T, Chang L-J, Yang L-J, Terada N et al (2013) Direct reprogramming of fibroblasts to myocytes via bacterial injection of MyoD protein. Cell Reprogram 15:117–125

    CAS  Google Scholar 

  58. Kim EY, Page P, Dellefave-Castillo LM, McNally EM, Wyatt EJ (2016) Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle 6:32

    Article  Google Scholar 

  59. Horio F, Sakurai H, Ohsawa Y, Nakano S, Matsukura M, Fujii I (2017) Functional validation and expression analysis of myotubes converted from skin fibroblasts using a simple direct reprogramming strategy. eNeurologicalSci 6:9–15

    Article  Google Scholar 

  60. Ieda M, Fu J-D, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  CAS  Google Scholar 

  61. Chen JX, Krane M, Deutsch M-A, Wang L, Rav-Acha M, Gregoire S et al (2012) Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ Res 111:50–55

    Article  CAS  Google Scholar 

  62. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Article  CAS  Google Scholar 

  63. Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, Sadahiro T, Umei T et al (2012) Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res 111:1147–1156

    Article  CAS  Google Scholar 

  64. Qian L, Berry EC, Fu J-D, Ieda M, Srivastava D (2013) Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat Protoc 8:1204–1215

    Article  CAS  Google Scholar 

  65. Wang L, Liu Z, Yin C, Asfour H, Chen O, Li Y et al (2015) Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ Res 116:237–244

    Article  CAS  Google Scholar 

  66. Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604

    Article  CAS  Google Scholar 

  67. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K et al (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110:1465–1473

    Article  CAS  Google Scholar 

  68. Jayawardena T, Mirotsou M, Dzau VJ (2014) Direct reprogramming of cardiac fibroblasts to cardiomyocytes using microRNAs. Methods Mol Biol 1150:263–272

    Article  CAS  Google Scholar 

  69. Jayawardena TM, Finch EA, Zhang L, Zhang H, Hodgkinson CP, Pratt RE et al (2015) MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res 116:418–424

    Article  CAS  Google Scholar 

  70. Nam Y-J, Song K, Luo X, Daniel E, Lambeth K, West K et al (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A 110:5588–5593

    Article  CAS  Google Scholar 

  71. Hirai H, Katoku-Kikyo N, Keirstead SA, Kikyo N (2013) Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. Cardiovasc Res 100:105–113

    Article  CAS  Google Scholar 

  72. Hirai H, Kikyo N (2014) Inhibitors of suppressive histone modification promote direct reprogramming of fibroblasts to cardiomyocyte-like cells. Cardiovasc Res 102:188–190

    Article  CAS  Google Scholar 

  73. Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T et al (2014) Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep 6:951–960

    Article  CAS  Google Scholar 

  74. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C et al (2015) Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res 25:1013–1024

    Article  CAS  Google Scholar 

  75. Zhao Y, Londono P, Cao Y, Sharpe EJ, Proenza C, O'Rourke R et al (2015) High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun 6:8243

    Article  Google Scholar 

  76. Zhou H, Dickson ME, Kim MS, Bassel-Duby R, Olson EN (2015) Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proc Natl Acad Sci U S A 112:11864–11869

    Article  CAS  Google Scholar 

  77. Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S et al (2015) Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions. Stem Cell Rep 5:1128–1142

    Article  CAS  Google Scholar 

  78. Talkhabi M, Pahlavan S, Aghdami N, Baharvand H (2015) Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes. Biochem Biophys Res Commun 463:699–705

    Article  CAS  Google Scholar 

  79. Park G, Yoon BS, Kim YS, Choi S-C, Moon J-H, Kwon S et al (2015) Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials 54:201–212

    Article  CAS  Google Scholar 

  80. Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu J-D et al (2016) Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science (New York, NY) 352:1216–1220

    Article  CAS  Google Scholar 

  81. Zhou Y, Wang L, Vaseghi HR, Liu Z, Lu R, Alimohamadi S et al (2016) Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell 18:382–395

    Article  CAS  Google Scholar 

  82. Mohamed TMA, Stone NR, Berry EC, Radzinsky E, Huang Y, Pratt K et al (2017) Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation 135:978–995

    Article  CAS  Google Scholar 

  83. Hughes RD, Mitry RR, Dhawan A (2012) Current status of hepatocyte transplantation. Transplantation 93:342–347

    Article  CAS  Google Scholar 

  84. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335

    Article  CAS  Google Scholar 

  85. Bhatia SK (2010) Biomaterials for clinical applications

    Google Scholar 

  86. Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44

    Article  CAS  Google Scholar 

  87. Anversa P, Kajstura J (1998) Myocyte cell death in the diseased heart. Circ Res 82:1231–1233

    Article  CAS  Google Scholar 

  88. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    Article  CAS  Google Scholar 

  89. Xia P, Liu Y, Cheng Z (2016) Signaling pathways in cardiac myocyte apoptosis. Biomed Res Int 2016:9583268

    Google Scholar 

  90. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  Google Scholar 

  91. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    Article  CAS  Google Scholar 

  92. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H (1960) Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70:68–78

    CAS  Google Scholar 

  93. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922

    Article  CAS  Google Scholar 

  94. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3:405–407

    Article  CAS  Google Scholar 

  95. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787

    Article  CAS  Google Scholar 

  96. Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47:1777–1785

    Article  Google Scholar 

  97. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    Article  CAS  Google Scholar 

  98. Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39:60–76

    Article  CAS  Google Scholar 

  99. Frangogiannis NG (2015) Pathophysiology of myocardial infarction. Compr Physiol 5:1841–1875

    Article  Google Scholar 

  100. Richardson WJ, Clarke SA, Quinn TA, Holmes JW (2015) Physiological implications of myocardial scar structure. Compr Physiol 5:1877–1909

    Article  Google Scholar 

  101. Leor J, Palevski D, Amit U, Konfino T (2016) Macrophages and regeneration: lessons from the heart. Semin Cell Dev Biol 58:26–33

    Article  CAS  Google Scholar 

  102. Ramos G, Hofmann U, Frantz S (2016) Myocardial fibrosis seen through the lenses of T-cell biology. J Mol Cell Cardiol 92:41–45

    Article  CAS  Google Scholar 

  103. Lighthouse JK, Small EM (2016) Transcriptional control of cardiac fibroblast plasticity. J Mol Cell Cardiol 91:52–60

    Article  CAS  Google Scholar 

  104. Saez P, Kuhl E (2016) Computational modeling of acute myocardial infarction. Comput Methods Biomech Biomed Eng 19:1107–1115

    Article  CAS  Google Scholar 

  105. Cheng B, Chen HC, Chou IW, Tang TWH, Hsieh PCH (2017) Harnessing the early post-injury inflammatory responses for cardiac regeneration. J Biomed Sci 24:7

    Article  CAS  Google Scholar 

  106. Ghosh AK, Rai R, Flevaris P, Vaughan DE (2017) Epigenetics in reactive and reparative cardiac fibrogenesis: the promise of epigenetic therapy. J Cell Physiol 232:1941–1956. doi:10.1002/jcp.25699

    Google Scholar 

  107. Turner NA (2016) Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol 94:189–200

    Article  CAS  Google Scholar 

  108. Chen B, Frangogiannis NG (2017) Immune cells in repair of the infarcted myocardium. Microcirculation 24:e12305. https://doi.org/10.1111/micc.12305

    Article  Google Scholar 

  109. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol 101:231–240

    Article  CAS  Google Scholar 

  110. Kurose H, Mangmool S (2016) Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch Pharm Res 39:1100–1113

    Article  CAS  Google Scholar 

  111. Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698

    Article  CAS  Google Scholar 

  112. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436

    Article  CAS  Google Scholar 

  113. Gao Y, Chu M, Hong J, Shang J, Di X (2014) Hypoxia induces cardiac fibroblast proliferation and phenotypic switch: a role for caveolae and caveolin-1/PTEN mediated pathway. J Thorac Dis 6:1458–1468

    Google Scholar 

  114. Moore-Morris T, Cattaneo P, Puceat M, Evans SM (2016) Origins of cardiac fibroblasts. J Mol Cell Cardiol 91:1–5

    Article  CAS  Google Scholar 

  115. Kamps JA, Krenning G (2016) Micromanaging cardiac regeneration: targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol 8:163–179

    Article  Google Scholar 

  116. Fu J-D, Rushing SN, Lieu DK, Chan CW, Kong C-W, Geng L et al (2011) Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One 6:e27417

    Article  CAS  Google Scholar 

  117. Wilson KD, Hu S, Venkatasubrahmanyam S, Fu J-D, Sun N, Abilez OJ et al (2010) Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ Cardiovasc Genet 3:426–435

    Article  CAS  Google Scholar 

  118. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  CAS  Google Scholar 

  119. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB et al (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A 104:20844–20849

    Article  CAS  Google Scholar 

  120. Qian L, Wythe JD, Liu J, Cartry J, Vogler G, Mohapatra B et al (2011) Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. J Cell Biol 193:1181–1196

    Article  CAS  Google Scholar 

  121. Ivey KN, Muth A, Arnold J, King FW, Yeh R-F, Fish JE et al (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2:219–229

    Article  CAS  Google Scholar 

  122. Huang F, Tang L, Fang Z-f, Hu X-q, Pan J-y, Zhou S-h (2013) miR-1-mediated induction of cardiogenesis in mesenchymal stem cells via downregulation of Hes-1. BioMed Res Int 2013:216286

    Google Scholar 

  123. Nagalingam RS, Safi HA, Czubryt MP (2016) Gaining myocytes or losing fibroblasts: challenges in cardiac fibroblast reprogramming for infarct repair. J Mol Cell Cardiol 93:108–114

    Article  CAS  Google Scholar 

  124. Andrée B, Zweigerdt R (2016) Directing Cardiomyogenic differentiation and Transdifferentiation by ectopic gene expression - direct transition or reprogramming detour? CGT 16:14–20

    Article  CAS  Google Scholar 

  125. Karpov AA, Udalova DV, Pliss MG, Galagudza MM (2016) Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif 50(2):e12316. doi:10.1111/cpr.12316

    Google Scholar 

  126. Yang W, Zheng H, Wang Y, Lian F, Hu Z, Xue S (2015) Nesprin-1 has key roles in the process of mesenchymal stem cell differentiation into cardiomyocyte-like cells in vivo and in vitro. Mol Med Rep 11:133–142

    Article  CAS  Google Scholar 

  127. Li P, Zhang L (2015) Exogenous Nkx2.5- or GATA-4-transfected rabbit bone marrow mesenchymal stem cells and myocardial cell co-culture on the treatment of myocardial infarction in rabbits. Mol Med Rep 12:2607–2621

    Article  CAS  Google Scholar 

  128. Li J, Zhu K, Wang Y, Zheng J, Guo C, Lai H et al (2015) Combination of IGF1 gene manipulation and 5AZA treatment promotes differentiation of mesenchymal stem cells into cardiomyocyte-like cells. Mol Med Rep 11:815–820

    Article  CAS  Google Scholar 

  129. Mohanty S, Bose S, Jain KG, Bhargava B, Airan B (2013) TGFβ1 contributes to cardiomyogenic-like differentiation of human bone marrow mesenchymal stem cells. Int J Cardiol 163:93–99

    Article  Google Scholar 

  130. Feng Y, Yang P, Luo S, Zhang Z, Li H, Zhu P et al (2016) Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro. Mol Med Rep 14:637–642

    Article  CAS  Google Scholar 

  131. Yu Z, Zou Y, Fan J, Li C, Ma L (2016) Notch1 is associated with the differentiation of human bone marrow-derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep 14:5065–5071

    Article  CAS  Google Scholar 

  132. Hou J, Long H, Zhou C, Zheng S, Wu H, Guo T et al (2017) Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem Cell Res Ther 8:4

    Article  Google Scholar 

  133. Carvalho PH, Daibert APF, Monteiro BS, Okano BS, Carvalho JL, da Cunha DNQ et al (2013) Diferenciação de células-tronco mesenquimais derivadas do tecido adiposo em cardiomiócitos. Arq Bras Cardiol 100:82–89

    Article  CAS  Google Scholar 

  134. Wystrychowski W, Patlolla B, Zhuge Y, Neofytou E, Robbins RC, Beygui RE (2016) Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum. Stem Cell Res Ther 7:84

    Article  Google Scholar 

  135. Gwak S-J, Bhang SH, Yang HS, Kim S-S, Lee D-H, Lee S-H et al (2009) In vitro cardiomyogenic differentiation of adipose-derived stromal cells using transforming growth factor-beta1. Cell Biochem Funct 27:148–154

    Article  CAS  Google Scholar 

  136. Nagata H, Ii M, Kohbayashi E, Hoshiga M, Hanafusa T, Asahi M (2016) Cardiac adipose-derived stem cells exhibit high differentiation potential to cardiovascular cells in C57BL/6 mice. Stem Cells Transl Med 5:141–151

    Article  Google Scholar 

  137. Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P et al (2010) Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 14:878–889

    Article  CAS  Google Scholar 

  138. Takahashi T, Nagai T, Kanda M, Liu M-L, Kondo N, Naito AT et al (2015) Regeneration of the cardiac conduction system by adipose tissue-derived stem cells. Circ J 79:2703–2712

    Article  Google Scholar 

  139. Sung I-Y, Son H-N, Ullah I, Bharti D, Park J-M, Cho Y-C et al (2016) Cardiomyogenic differentiation of human dental follicle-derived stem cells by suberoylanilide hydroxamic acid and their in vivo homing property. Int J Med Sci 13:841–852

    Article  Google Scholar 

  140. Lopez-Ruiz E, Peran M, Picon-Ruiz M, Garcia MA, Carrillo E, Jimenez-Navarro M et al (2014) Cardiomyogenic differentiation potential of human endothelial progenitor cells isolated from patients with myocardial infarction. Cytotherapy 16:1229–1237

    Article  CAS  Google Scholar 

  141. Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, Ogórek B et al (2011) Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123:1287–1296

    Article  CAS  Google Scholar 

  142. Goumans M-J, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CHG et al (2007) TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1:138–149

    Article  CAS  Google Scholar 

  143. Sluijter JPG, van Mil A, van Vliet P, Metz CHG, Liu J, Doevendans PA et al (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30:859–868

    Article  CAS  Google Scholar 

  144. Avitabile D, Crespi A, Brioschi C, Parente V, Toietta G, Devanna P et al (2011) Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process. Am J Phys Heart Circ Phys 300:H1875–H1884

    Google Scholar 

  145. Freeman BT, Kouris NA, Ogle BM (2015) Tracking fusion of human mesenchymal stem cells after transplantation to the heart. Stem Cells Transl Med 4:685–694

    Article  Google Scholar 

  146. Kempf H, Zweigerdt R (2017) Scalable cardiac differentiation of pluripotent stem cells using specific growth factors and small molecules. Adv Biochem Eng/Biotechnol. https://doi.org/10.1007/10_2017_XX

  147. Yang X, Pabon L, Murry CE (2014) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114:511–523

    Article  CAS  Google Scholar 

  148. Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M (2015) Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev 24:1035–1052

    Article  CAS  Google Scholar 

  149. Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok W-M, Wu JC et al (2014) High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp 91:52010

    Google Scholar 

  150. Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z et al (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15:365–375

    Article  CAS  Google Scholar 

  151. Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L et al (2017) Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 35:56–68

    Article  CAS  Google Scholar 

  152. Pei F, Jiang J, Bai S, Cao H, Tian L, Zhao Y et al (2017) Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells. Stem Cell Res 19:94–103

    Article  CAS  Google Scholar 

  153. Fuerstenau-Sharp M, Zimmermann ME, Stark K, Jentsch N, Klingenstein M, Drzymalski M et al (2015) Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS One 10:e0126596

    Article  CAS  Google Scholar 

  154. Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S (2016) Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Rep 7:764–776

    Article  CAS  Google Scholar 

  155. Kempf H, Olmer R, Kropp C, Rückert M, Jara-Avaca M, Robles-Diaz D et al (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep 3:1132–1146

    Article  CAS  Google Scholar 

  156. Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K et al (2016) Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun 7:13602

    Article  CAS  Google Scholar 

  157. Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang H-IP et al (2012) Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 8:388–402

    Article  CAS  Google Scholar 

  158. Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ et al (2017) Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc 12:15–31

    Article  CAS  Google Scholar 

  159. Hattori F, Chen H, Yamashita H, Tohyama S, Satoh Y-S, Yuasa S et al (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7:61–66

    Article  CAS  Google Scholar 

  160. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG et al (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29:1011–1018

    Article  CAS  Google Scholar 

  161. van Hoof D, Dormeyer W, Braam SR, Passier R, Monshouwer-Kloots J, Ward-van Oostwaard D et al (2010) Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res 9:1610–1618

    Article  CAS  Google Scholar 

  162. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S et al (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6:e23657

    Article  CAS  Google Scholar 

  163. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137

    Article  CAS  Google Scholar 

  164. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41

    Article  CAS  Google Scholar 

  165. Pasquier J, Gupta R, Rioult D, Hoarau-Vechot J, Courjaret R, Machaca K et al (2017) Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derived cardiomyocytes. J Heart Lung Transplant 36(6):684–693

    Article  Google Scholar 

  166. Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J et al (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34:1134–1146

    Article  CAS  Google Scholar 

  167. Oberwallner B, Brodarac A, Anic P, Saric T, Wassilew K, Neef K et al (2015) Human cardiac extracellular matrix supports myocardial lineage commitment of pluripotent stem cells. Eur J Cardiothorac Surg 47:416–425. discussion 425

    Article  Google Scholar 

  168. Amano Y, Nishiguchi A, Matsusaki M, Iseoka H, Miyagawa S, Sawa Y et al (2016) Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration layer-by-layer technique and their application for pharmaceutical assays. Acta Biomater 33:110–121

    Article  CAS  Google Scholar 

  169. Valarmathi MT, Fuseler JW, Davis JM, Price RL (2017) A novel human tissue-engineered 3-D functional vascularized cardiac muscle construct. Front Cell Dev Biol 5:2

    Article  Google Scholar 

  170. Eder A, Vollert I, Hansen A, Eschenhagen T (2016) Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 96:214–224

    Article  CAS  Google Scholar 

  171. Kempf H, Andree B, Zweigerdt R (2016) Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 96:18–30

    Article  CAS  Google Scholar 

  172. Walsh-Irwin C, Hannibal GB (2015) Sick sinus syndrome. AACN Adv Crit Care 26:376–380

    Article  Google Scholar 

  173. Dobrzynski H, Boyett MR, Anderson RH (2007) New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 115:1921–1932

    Article  Google Scholar 

  174. Ewy GA (2014) Sick sinus syndrome: synopsis. J Am Coll Cardiol 64:539–540

    Article  Google Scholar 

  175. Semelka M, Gera J, Usman S (2013) Sick sinus syndrome: a review. Am Fam Physician 87:691–696

    Google Scholar 

  176. Gregoratos G (2005) Indications and recommendations for pacemaker therapy. Am Fam Physician 71:1563–1570

    Google Scholar 

  177. Tse G, Liu T, Li KH, Laxton V, Wong AO, Chan YW et al (2017) Tachycardia-bradycardia syndrome: electrophysiological mechanisms and future therapeutic approaches (review). Int J Mol Med 39:519–526

    Article  CAS  Google Scholar 

  178. Bakker ML, Boink GJ, Boukens BJ, Verkerk AO, van den Boogaard M, den Haan AD et al (2012) T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc Res 94:439–449

    Article  CAS  Google Scholar 

  179. Hu Y-F, Dawkins JF, Cho HC, Marban E, Cingolani E (2014) Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci Transl Med 6:245ra94

    Article  CAS  Google Scholar 

  180. Kapoor N, Liang W, Marban E, Cho HC (2013) Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat Biotechnol 31:54–62

    Article  CAS  Google Scholar 

  181. Ionta V, Liang W, Kim EH, Rafie R, Giacomello A, Marban E et al (2015) SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Rep 4:129–142

    Article  CAS  Google Scholar 

  182. Jung JJ, Husse B, Rimmbach C, Krebs S, Stieber J, Steinhoff G et al (2014) Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal bodies from pluripotent stem cells. Stem Cell Rep 2:592–605

    Article  Google Scholar 

  183. Lown B (1967) Electrical reversion of cardiac arrhythmias. Br Heart J 29:469–489

    Article  CAS  Google Scholar 

  184. Johns DC, Nuss HB, Chiamvimonvat N, Ramza BM, Marban E, Lawrence JH (1995) Adenovirus-mediated expression of a voltage-gated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). A novel strategy for modifying excitability. J Clin Invest 96:1152–1158

    Article  CAS  Google Scholar 

  185. Miake J, Marbán E, Nuss HB (2002) Biological pacemaker created by gene transfer. Nature 419:132–133

    Article  CAS  Google Scholar 

  186. Schram G (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950

    Article  CAS  Google Scholar 

  187. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    Article  CAS  Google Scholar 

  188. Tinker A, Jan YN, Jan LY (1996) Regions responsible for the assembly of inwardly rectifying potassium channels. Cell 87:857–868

    Article  CAS  Google Scholar 

  189. Miake J, Marbán E, Nuss HB (2003) Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 111:1529–1536

    Article  CAS  Google Scholar 

  190. Brugada P, Wellens HJ (1985) Early afterdepolarizations: role in conduction block, “prolonged repolarization-dependent reexcitation,” and tachyarrhythmias in the human heart. Pacing Clin Electrophysiol 8:889–896

    Article  CAS  Google Scholar 

  191. January CT, Moscucci A (1992) Cellular mechanisms of early afterdepolarizations. Ann N Y Acad Sci 644:23–32

    Article  CAS  Google Scholar 

  192. Ennis IL, Li RA, Murphy AM, Marbán E, Nuss HB (2002) Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. J Clin Invest 109:393–400

    Article  CAS  Google Scholar 

  193. Baruscotti M, Bucchi A, Difrancesco D (2005) Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 107:59–79

    Article  CAS  Google Scholar 

  194. Plotnikov AN, Sosunov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L et al (2004) Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109:506–512

    Article  Google Scholar 

  195. Qu J, Plotnikov A, Danilo P, Shlapakova I, Cohen IS, Robinson RB et al (2003) Expression and function of a biological pacemaker in canine heart. Circulation 107:1106–1109

    Article  Google Scholar 

  196. Tse H-F, Xue T, Lau C-P, Siu C-W, Wang K, Zhang Q-Y et al (2006) Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 114:1000–1011

    Article  CAS  Google Scholar 

  197. Kashiwakura Y, Cho HC, Barth AS, Azene E, Marbán E (2006) Gene transfer of a synthetic pacemaker channel into the heart: a novel strategy for biological pacing. Circulation 114:1682–1686

    Article  Google Scholar 

  198. Cho HC, Kashiwakura Y, Marbán E (2007) Creation of a biological pacemaker by cell fusion. Circ Res 100:1112–1115

    Article  CAS  Google Scholar 

  199. Dorn T, Goedel A, Lam JT, Haas J, Tian Q, Herrmann F et al (2015) Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. Stem Cells (Dayton, Ohio) 33:1113–1129

    Article  CAS  Google Scholar 

  200. Frank DU, Carter KL, Thomas KR, Burr RM, Bakker ML, Coetzee WA et al (2012) Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci U S A 109:E154–E163

    Article  CAS  Google Scholar 

  201. Hoogaars WMH, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LYE et al (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21:1098–1112

    Article  CAS  Google Scholar 

  202. Vedantham V, Galang G, Evangelista M, Deo RC, Srivastava D (2015) RNA sequencing of mouse sinoatrial node reveals an upstream regulatory role for islet-1 in cardiac pacemaker cells. Circ Res 116:797–803

    Article  CAS  Google Scholar 

  203. Wiese C, Grieskamp T, Airik R, Mommersteeg MTM, Gardiwal A, de Gier-de Vrie C et al (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104:388–397

    Article  CAS  Google Scholar 

  204. Greulich F, Trowe M-O, Leffler A, Stoetzer C, Farin HF, Kispert A (2016) Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. J Mol Cell Cardiol 97:140–149

    Article  CAS  Google Scholar 

  205. Nam Y-J, Lubczyk C, Bhakta M, Zang T, Fernandez-Perez A, McAnally J et al (2014) Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development 141:4267–4278

    Article  CAS  Google Scholar 

  206. Bruzauskaite I, Bironaite D, Bagdonas E, Skeberdis VA, Denkovskij J, Tamulevicius T et al (2016) Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers. Stem Cell Res Ther 7:67

    Article  CAS  Google Scholar 

  207. Feng Y, Luo S, Tong S, Zhong L, Zhang C, Yang P et al (2015) Electric-pulse current stimulation increases if current in mShox2 genetically modified canine mesenchymal stem cells. Cardiology 132:49–57

    Article  CAS  Google Scholar 

  208. Feng Y, Luo S, Yang P, Song Z (2016) Electric pulse current stimulation increases electrophysiological properties of If current reconstructed in mHCN4-transfected canine mesenchymal stem cells. Exp Ther Med 11:1323–1329

    Article  CAS  Google Scholar 

  209. Jun C, Zhihui Z, Lu W, Yaoming N, Lei W, Yao Q et al (2012) Canine bone marrow mesenchymal stromal cells with lentiviral mHCN4 gene transfer create cardiac pacemakers. Cytotherapy 14:529–539

    Article  CAS  Google Scholar 

  210. Lu W, Yaoming N, Boli R, Jun C, Changhai Z, Yang Z et al (2013) mHCN4 genetically modified canine mesenchymal stem cells provide biological pacemaking function in complete dogs with atrioventricular block. Pacing Clin Electrophysiol 36:1138–1149

    Article  Google Scholar 

  211. Ma J, Zhang C, Huang S, Wang G, Quan X (2010) Use of rats mesenchymal stem cells modified with mHCN2 gene to create biologic pacemakers. J Huazhong Univ Sci Technol Med Sci 30:447–452

    Article  CAS  Google Scholar 

  212. Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo P, Lorell BH, Potapova IA et al (2007) Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 116:706–713

    Article  Google Scholar 

  213. Potapova I, Plotnikov A, Lu Z, Danilo P, Valiunas V, Qu J et al (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94:952–959

    Article  CAS  Google Scholar 

  214. Yang J, Song T, Wu P, Chen Y, Fan X, Chen H et al (2012) Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells. Mol Med Rep 5:108–113

    CAS  Google Scholar 

  215. Yang X-J, Zhou Y-F, Li H-X, Han L-H, Jiang W-P (2008) Mesenchymal stem cells as a gene delivery system to create biological pacemaker cells in vitro. J Int Med Res 36:1049–1055

    Article  CAS  Google Scholar 

  216. Zhou Y-F, Yang X-J, Li H-X, Han L-H, Jiang W-P (2013) Genetically-engineered mesenchymal stem cells transfected with human HCN1 gene to create cardiac pacemaker cells. J Int Med Res 41:1570–1576

    Article  CAS  Google Scholar 

  217. Zhou Y-F, Yang X-J, Li H-X, Han L-H, Jiang W-P (2007) Mesenchymal stem cells transfected with HCN2 genes by LentiV can be modified to be cardiac pacemaker cells. Med Hypotheses 69:1093–1097

    Article  CAS  Google Scholar 

  218. Tong M, Yang X-J, Geng B-y, Han L-H, Zhou Y-F, Zhao X et al (2010) Overexpression of connexin 45 in rat mesenchymal stem cells improves the function as cardiac biological pacemakers. Chin Med J 123:1571–1576

    CAS  Google Scholar 

  219. Chen L, Deng Z-J, Zhou J-S, Ji R-J, Zhang X, Zhang C-S et al (2017) Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac pacemaker cells. Mol Cell Biochem. doi:10.1007/s11010-017-3016-y

    Google Scholar 

  220. Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48:173–182

    Article  CAS  Google Scholar 

  221. David R, Stieber J, Fischer E, Brunner S, Brenner C, Pfeiler S et al (2009) Forward programming of pluripotent stem cells towards distinct cardiovascular cell types. Cardiovasc Res 84:263–272

    Article  CAS  Google Scholar 

  222. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860

    Article  CAS  Google Scholar 

  223. Hazeltine LB, Badur MG, Lian X, Das A, Han W, Palecek SP (2014) Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes. Acta Biomater 10:604–612

    Article  CAS  Google Scholar 

  224. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857

    Article  CAS  Google Scholar 

  225. Ojala M, Rajala K, Pekkanen-Mattila M, Miettinen M, Huhtala H, Aalto-Setala K (2012) Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS One 7:e48659

    Article  CAS  Google Scholar 

  226. Kleger A, Seufferlein T, Malan D, Tischendorf M, Storch A, Wolheim A et al (2010) Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Circulation 122:1823–1836

    Article  CAS  Google Scholar 

  227. Jara-Avaca M, Kempf H, Ruckert M, Robles-Diaz D, Franke A, de La Roche J et al (2017) EBIO does not induce cardiomyogenesis in human pluripotent stem cells but modulates cardiac subtype enrichment by lineage-selective survival. Stem Cell Rep 8:305–317

    Article  Google Scholar 

  228. Scavone A, Capilupo D, Mazzocchi N, Crespi A, Zoia S, Campostrini G et al (2013) Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells. Circ Res 113:389–398

    Article  CAS  Google Scholar 

  229. Rust W, Balakrishnan T, Zweigerdt R (2009) Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression. Regen Med 4:225–237

    Article  CAS  Google Scholar 

  230. Hashem SI, Claycomb WC (2013) Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes. Mol Cell Biochem 383:161–171

    Article  CAS  Google Scholar 

  231. Rimmbach C, Jung JJ, David R (2015) Generation of murine cardiac pacemaker cell aggregates based on ES-cell-programming in combination with Myh6-promoter-selection. J Vis Exp 96:e52465

    Google Scholar 

  232. Wolfien M, Rimmbach C, Schmitz U, Jung JJ, Krebs S, Steinhoff G et al (2016) TRAPLINE: a standardized and automated pipeline for RNA sequencing data analysis, evaluation and annotation. BMC Bioinform 17:21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hausburg, F., Jung, J.J., David, R. (2017). Specific Cell (Re-)Programming: Approaches and Perspectives. In: Martin, U., Zweigerdt, R., Gruh, I. (eds) Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, vol 163. Springer, Cham. https://doi.org/10.1007/10_2017_27

Download citation

Publish with us

Policies and ethics