Skip to main content

Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 160))

Abstract

Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sivakumar G, Vail DR, Xu JF, Burner DM, Lay JO, Ge XM, Weathers PJ (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10(1):8–18

    Article  CAS  Google Scholar 

  2. Mussatto SI, Dragone G, Guimaraes PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830

    Article  CAS  Google Scholar 

  3. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    Article  CAS  Google Scholar 

  4. Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63(100):114–122

    Article  Google Scholar 

  5. Sanderson K (2011) Lignocellulose: a chewy problem. Nature 474(7352):S12–S14

    Article  CAS  Google Scholar 

  6. Sayre R (2010) Microalgae: the potential for carbon capture. BioScience 60(9):722–727

    Article  Google Scholar 

  7. Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466

    Article  CAS  Google Scholar 

  8. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19(3):235–240

    Article  CAS  Google Scholar 

  9. Lee RA, Lavoi J-M (2013) From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3(2):6–11

    Article  Google Scholar 

  10. Maity JP, Bundschuh J, Chen C-Y, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives–a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  11. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  CAS  Google Scholar 

  12. Büdel B (2011) Cyanobacteria: habitats and species. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, ecological studies, vol 215. Springer, Heidelberg, pp 11–21

    Google Scholar 

  13. Price GD, Pengelly JJ, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64(3):753–768

    Article  CAS  Google Scholar 

  14. McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164(4):2247–2261

    Article  CAS  Google Scholar 

  15. Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91(3):471–490

    Article  CAS  Google Scholar 

  16. Gao ZX, Zhao H, Li ZM, Tan XM, Lu XF (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    Article  CAS  Google Scholar 

  17. Nozzi NE, Oliver JWK, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol 1:7

    Article  Google Scholar 

  18. Taton A, Unglaub F, Wright NE, Zeng WY, Paz-Yepes J, Brahamsha B, Palenik B, Peterson TC, Haerizadeh F, Golden SS, Golden JW (2014) Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res 42(17), e136

    Article  CAS  Google Scholar 

  19. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  Google Scholar 

  20. Singh RK, Tiwari SP, Rai AK, Mohapatra TM (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64(6):401–412

    Article  CAS  Google Scholar 

  21. Kim B, Kim WJ, Kim DI, Lee SY (2015) Applications of genome-scale metabolic network model in metabolic engineering. J Ind Microbiol Biotechnol 42(3):339–348

    Google Scholar 

  22. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305

    CAS  Google Scholar 

  23. Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120

    Article  CAS  Google Scholar 

  24. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180

    Article  CAS  Google Scholar 

  25. Olivera JWK, Machadoa IMP, Yonedaa H, Atsumia S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110:1249–1254

    Article  Google Scholar 

  26. Lana EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109:6018–6023

    Article  Google Scholar 

  27. Shen CR, Liao JC (2012) Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ Sci 5:9574–9583

    Article  CAS  Google Scholar 

  28. Zhou J, Zhang H, Zhang Y, Li Y, Ma Y (2012) Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng 14(4):394–400

    Article  CAS  Google Scholar 

  29. Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ Sci 5:8998–9006

    Article  CAS  Google Scholar 

  30. Liu X, Sheng J, Curtiss R III (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904

    Article  CAS  Google Scholar 

  31. Ruffing AM, Jones HD (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109(9):2190–2199

    Article  CAS  Google Scholar 

  32. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  33. Hirokawa Y, Suzuki I, Hanai T (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J Biosci Bioeng 119(5):585–590

    Article  CAS  Google Scholar 

  34. Möllers KB, Cannella D, Jørgensen H, Frigaard N-U (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7(64)

    Google Scholar 

  35. Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528

    CAS  Google Scholar 

  36. Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of arthrospira (Spirulina) platensis. Energies 6:3937–3950

    Article  CAS  Google Scholar 

  37. Fang M, Jin L, Zhang C, Tan Y, Jiang P, Ge N, Heping L, Xing X (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS One 8(10), e77046

    Article  CAS  Google Scholar 

  38. Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC6803 by redirecting the electron. Metab Eng 13(5):610–616

    Article  CAS  Google Scholar 

  39. McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76(15):5032–5038

    Article  CAS  Google Scholar 

  40. Ducat DC, Way JC, Silveremail PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103

    Article  CAS  Google Scholar 

  41. Min H, Sherman LA (2010) Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76(13):4293–4301

    Article  CAS  Google Scholar 

  42. Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74(19):6102–6113

    Article  CAS  Google Scholar 

  43. Aoyama KUI, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferment Bioeng 83:17–20

    Article  CAS  Google Scholar 

  44. Jeffries TW, Timourien H, Ward RL (1978) Hydrogen production by Anabaena cylindrica: effect of varying ammonium and ferric ions, pH and light. Appl Environ Microbiol 35:704–710

    Google Scholar 

  45. Varel VH, Chen TH, Hashimoto AG (1988) Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Conserv Recycl 1(1):19–26

    Article  CAS  Google Scholar 

  46. Samson R, LeDuyt A (1986) Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 28(7):1014–1023

    Article  CAS  Google Scholar 

  47. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  CAS  Google Scholar 

  48. Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng 104(5):939–946

    Article  CAS  Google Scholar 

  49. Tsujimura S, Wadano A, Kano K, Iked T (2001) Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzyme Microb Technol 29(4-5):225–231

    Article  CAS  Google Scholar 

  50. Tanaka K, Tamamushi R, Ogawa T (1985) Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J Chem Technol Biotechnol 35(3):191–197

    Article  Google Scholar 

  51. Zhao J, Li X-F, Ren Y-P, Wang X-H, Jian C (2012) Electricity generation from Taihu Lake cyanobacteria by sediment microbial fuel cells. J Chem Technol Biotechnol 87(11):1567–1573

    Article  CAS  Google Scholar 

  52. Cheng D, He Q (2014) Assessment of environmental stresses for enhanced microalgal biofuel production–an overview. Front Energy Res 2:1–8

    Google Scholar 

  53. Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645

    Article  CAS  Google Scholar 

  54. Aikawa S, Joseph A, Yamad R, Izumi Y, Yamagishi T, Matsuda F, Kawai H, Chang J-S, Hasunuma T, Kondo A (2013) Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ Sci 6:1844–1849

    Google Scholar 

  55. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    Article  CAS  Google Scholar 

  56. Rosgaard L, Porcellinis AJ, Jacobsen JH, Frigaard N-U, Sakuragi Y (2012) Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 162(1):134–147

    Google Scholar 

  57. Matsunaga T, Takeyama H (1995) Genetic engineering in marine cyanobacteria. J Appl Phycol 7(1):77–84

    Article  CAS  Google Scholar 

  58. Koksharova O, Wolk C (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58(2):123–137

    Article  CAS  Google Scholar 

  59. Vioque A (2007) Transformation of cyanobacteria. Adv Exp Med Biol 616:12–22

    Article  Google Scholar 

  60. Xu Y, Alvey RM, Byrne PO, Graham JE, Shen G, Bryant DA (2011) Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Methods Mol Biol 684:273–293

    Article  CAS  Google Scholar 

  61. Kawamura M, Sakakibara M, Watanabe T, Kita K, Hiraoka N, Obayashi A, Takagi M, Yano K (1986) A new restriction endonuclease from Spirulina platensis. Nucleic Acids Res 14(5):1985–1989

    Article  CAS  Google Scholar 

  62. Singh DP, Singh N (1997) Isolation and characterization of a metronidazole tolerant mutant of the cyanobacterium Spirulina platensis exhibiting multiple stress tolerance. World J Microbiol Biotechnol 13(2):179–183

    Article  CAS  Google Scholar 

  63. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8(6):536–546

    Article  CAS  Google Scholar 

  64. Nogales J, Gudmundsson S, Thiele I (2013) Toward systems metabolic engineering in cyanobacteria: opportunities and bottlenecks. Bioengineered 4(3):158–163

    Article  Google Scholar 

  65. Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344

    Google Scholar 

  66. Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246

    Article  Google Scholar 

  67. Ramey CJ, Barón-Sola Á, Aucoin HR, Boyle NR (2015) Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth Biol 4(11):1186–1196

    Google Scholar 

  68. Calteau A, Fewer DP, Latifi A, Coursin T, Laurent T, Jokela J, Kerfeld CA, Sivonen K, Piel J, Gugger M (2014) Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria. BMC Genomics 15:977

    Article  CAS  Google Scholar 

  69. Stanley DN, Raines CA, Kerfeld CA (2013) Comparative analysis of 126 cyanobacterial genomes reveals evidence of functional diversity among homologs of the redox-regulated CP12 protein. Plant Physiol 161(2):824–835

    Article  CAS  Google Scholar 

  70. Yoshikawa K, Hirasawa T, Ogawa K, Hidaka Y, Nakajima T, Furusawa C, Shimizu H (2013) Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol J 8(5):571–580

    Article  CAS  Google Scholar 

  71. Kopf M, Klähn S, Pade N, Weingärtner C, Hagemann M, Voß B, Hess WR (2014) Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803. DNA Res 21(3):255–266

    Article  CAS  Google Scholar 

  72. Dienst D, Georg J, Abts T, Jakorew L, Kuchmina E, Börner T, Wilde A, Dühring U, Enke H, Hess WR (2014) Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol Biofuels 7:21

    Google Scholar 

  73. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 43:2

    Google Scholar 

  74. Zingaro KA, Papoutsakis ET (2012) Toward a semisynthetic stress response system to engineer microbial solvent tolerance. MBio 3(5):e00308–e00312

    Google Scholar 

  75. Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X (2012) Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 11:5286–5300

    Article  CAS  Google Scholar 

  76. Tian X, Chen L, Wang J, Qiao J, Zhang W (2013) Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteomics 78:326–345

    Article  CAS  Google Scholar 

  77. Liu J, Chen L, Wang J, Qiao J, Zhang W (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:68

    Google Scholar 

  78. Qiao J, Huang S, Te R, Wang J, Chen L, Zhang W (2013) Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mech- anisms involved in salt stress responses in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 97:8253–8264

    Article  CAS  Google Scholar 

  79. Huang S, Chen L, Te R, Qiao J, Wang J, Zhang W (2013) Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803. Mol Biosyst 9:2565–2574

    Article  CAS  Google Scholar 

  80. Pei G, Chen L, Wang J, Qiao J, Zhang W (2014) Protein network signatures associated with exogenous biofuels treatments in cyanobacterium Synechocystis sp. PCC 6803. Front Bioeng Biotechnol 2:48

    Google Scholar 

  81. Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB (2010) Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC Syst Biol 4:105

    Google Scholar 

  82. Sánchez BJ, Nielsen J (2015) Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol 7:846–858

    Article  Google Scholar 

  83. Yen JY, Nazem-Bokaee H, Freedman BG, Athamneh AI, Senger RS (2013) Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. Biotechnol J 8(5):581–594

    Article  CAS  Google Scholar 

  84. McCloskey D, Palsson BO, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9:661

    Article  CAS  Google Scholar 

  85. Yang C, Hua Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng 4(3):202–216

    Article  CAS  Google Scholar 

  86. Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21(6):1617–1626

    Article  CAS  Google Scholar 

  87. Hong S-J, Lee C-G (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12(2):165–173

    Article  CAS  Google Scholar 

  88. Navarro E, Montagud A, Fernández de Córdoba P, Urchueguía JF (2009) Metabolic flux analysis of the hydrogen production potential in Synechocystis sp. PCC6803. Int J Hydrogen Energy 34(21):8828–8838

    Article  CAS  Google Scholar 

  89. Fu P (2009) Genome-scale modeling of Synechocystis sp. PCC 6803 and prediction of pathway insertion. J Chem Technol Biotechnol 84(473483)

    Google Scholar 

  90. Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154(1):410–422

    Article  CAS  Google Scholar 

  91. Montagud A, Navarro E, Fernandez de Cordoba P, Urchueguia JF, Patil KR (2010) Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst Biol 4:156

    Article  CAS  Google Scholar 

  92. Montagud A, Zelezniak A, Navarro E, de Cordoba PF, Urchueguia JF, Patil KR (2011) Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol J 6(3):330–342

    Article  CAS  Google Scholar 

  93. Yoshikawa K, Kojima Y, Nakajima T, Furusawa C, Hirasawa T, Shimizu H (2011) Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Appl Microbiol Biotechnol 92(2):347–358

    Article  CAS  Google Scholar 

  94. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109(7):2678–2683

    Article  CAS  Google Scholar 

  95. Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD (2012) Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 7(10), e48285

    Article  CAS  Google Scholar 

  96. Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013) Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9(6), e1003081

    Article  CAS  Google Scholar 

  97. Knoop H, Steuer R (2015) A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Front Bioeng Biotechnol 3:47

    Article  Google Scholar 

  98. Cogne G, Gros JB, Dussap CG (2003) Identification of a metabolic network structure representative of Arthrospira (spirulina) platensis metabolism. Biotechnol Bioeng 84(6):667–676

    Article  CAS  Google Scholar 

  99. Meechai A, Pongakarakun S, Deshnium P, Cheevadhanarak S, Bhumiratana S (2004) Metabolic flux distribution for γ-linolenic acid synthetic pathways in Spirulina platensis. Biotechnol Bioprocess Eng 9:506–513

    Google Scholar 

  100. Klanchui A, Khannapho C, Phodee A, Cheevadhanarak S, Meechai A (2012) iAK692: a genome-scale metabolic model of Spirulina platensis C1. BMC Syst Biol 6:71

    Article  CAS  Google Scholar 

  101. Hamilton JJ, Reed JL (2012) Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS One 7(4)

    Google Scholar 

  102. Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL (2013) Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J 8(5):619–630

    Article  CAS  Google Scholar 

  103. Song HS, McClure RS, Bernstein HC, Overall CC, Hill EA, Beliaev AS (2015) Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality. Life (Basel) 27(5):1127–1140

    Google Scholar 

  104. Vu TT, Stolyar SM, Pinchuk GE, Hill EA, Kucek LA, Brown RN, Lipton MS, Osterman A, Fredrickson JK, Konopka AE, Beliaev AS, Reed JL (2012) Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comput Biol 8(4):e1002460

    Google Scholar 

  105. Mueller TJ, Berla BM, Pakrasi HB, Maranas CD (2013) Rapid construction of metabolic models for a family of Cyanobacteria using a multiple source annotation workflow. BMC Syst Biol 7(142)

    Google Scholar 

  106. Triana J, Montagud A, Siurana M, Fuente D, Urchueguía A, Gamermann D, Torres J, Tena J, de Córdoba PF, Urchueguía JF (2014) Generation and evaluation of a genome-scale metabolic network model of Synechococcus elongatus PCC7942. Metabolites 4(3):680–698

    Google Scholar 

  107. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  CAS  Google Scholar 

  108. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42(Database issue):D459–D471

    Article  CAS  Google Scholar 

  109. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(Database issue):D277–D280

    Google Scholar 

  110. Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D'Eustachio P, Stein L (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39(Database issue):D691–D697

    Article  CAS  Google Scholar 

  111. UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212

    Article  Google Scholar 

  112. Nakao M, Okamoto S, Kohara M, Fujishiro T, Fujisawa T, Sato S, Tabata S, Kaneko T, Nakamura Y (2010) CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res 38(Database issue):D379–D381

    Article  CAS  Google Scholar 

  113. Sasaki NV, Sato N (2010) CyanoClust: comparative genome resources of cyanobacteria and plastids. Database 2010

    Google Scholar 

  114. Peter AP, Lakshmanan K, Mohandass S, Varadharaj S, Thilagar S, Abdul Kareem KA, Dharmar P, Gopalakrishnan S, Lakshmanan U (2015) Cyanobacterial KnowledgeBase (CKB), a compendium of cyanobacterial genomes and proteomes. PLoS One 10(8), e0136262

    Article  CAS  Google Scholar 

  115. Senachak J, Cheevadhanarak S, Hongsthong A (2015) SpirPro: a Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1. BMC Bioinformatics 16:233

    Article  CAS  Google Scholar 

  116. Arun PVPS, Bakku RK, Subhashini M, Singh P, Prabhu NP, Suzuki I, Prakash JSS (2012) CyanoPhyChe: a database for physico-chemical properties, structure and biochemical pathway information of cyanobacterial proteins. PLoS One 7(11), e49425

    Article  CAS  Google Scholar 

  117. Yang Y, Feng J, Li T, Ge F, Zhao J (2015) CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002. Database 2015:1–9

    Google Scholar 

  118. Hernandez-Prieto MA, Futschik ME (2012) CyanoEXpress: a web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp. PCC6803. Bioinformation 8(13):634–638

    Article  Google Scholar 

  119. Kelly L, Huang KH, Ding H, Chisholm SW (2012) ProPortal: a resource for integrated systems biology of Prochlorococcus and its phage. Nucleic Acids Res 40(Database issue):D632–D640

    Article  CAS  Google Scholar 

  120. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  121. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) The Pfam protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  Google Scholar 

  122. Lu Z (2010) PubMed and beyond: a survey of web tools for searching biomedical literature. Database 2011;2011:baq036

    Google Scholar 

  123. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L, Altman T, Paulsen I, Keseler IM, Caspi R (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11(1):40–79

    Article  CAS  Google Scholar 

  124. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server issue):W182–W185

    Google Scholar 

  125. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42(Database issue):D206–D214

    Article  CAS  Google Scholar 

  126. Swainston N, Smallbone K, Mendes P, Kell D, Paton N (2011) The SuBliMinaL toolbox: automating steps in the reconstruction of metabolic networks. J Integr Bioinform 8(2):186

    Google Scholar 

  127. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3)

    Google Scholar 

  128. Liao Y-C, Tsai M-H, Chen F-C, Hsiung CA (2012) GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics 28(13):1752–1758

    Google Scholar 

  129. Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 45(45)

    Google Scholar 

  130. Feng X, Xu Y, Chen Y, Tang YJ (2012) MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol 6:94

    Article  Google Scholar 

  131. Narang P, Khan S, Hemrom AJ, Lynn AM, Consortium OSDD (2014) MetaNET-a web-accessible interactive platform for biological metabolic network analysis. MC Syst Biol 8(130)

    Google Scholar 

  132. Kelley JJ, Lane A, Li X, Mutthoju B, Maor S, Egen D, Lun DS (2014) MOST: a software environment for constraint-based metabolic modeling and strain design. Bioinformatics 31:610–611

    Google Scholar 

  133. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307

    Article  CAS  Google Scholar 

  134. Baroukh C, Muñoz-Tamayo R, Steyer J-P, Bernard O (2014) DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae. PLoS One 9 (8):e104499

    Google Scholar 

  135. Gomez JA, Höffner K, Barton PI (2014) DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis. BMC Bioinformatics 2014(15):409

    Article  Google Scholar 

  136. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143

    Article  CAS  Google Scholar 

  137. Baart GJ, Martens DE (2012) Genome-scale metabolic models: reconstruction and analysis. Methods Mol Biol 799:107–126

    Article  CAS  Google Scholar 

  138. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109:2678–2683

    Google Scholar 

  139. Montagud A, Zelezniak A, Navarro E, de Córdoba PE, Urchueguía JF, Patil KR (2011) Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol J 6(3):330–342

    Google Scholar 

  140. Senger RS (2010) Biofuel production improvement with genome-scale models: the role of cell composition. Biotechnol J 5(7):671–685

    Article  CAS  Google Scholar 

  141. Jeffrey DO, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  Google Scholar 

  142. Mahadevan R, Schilling C (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  Google Scholar 

  143. Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155(1):70–78

    Article  CAS  Google Scholar 

  144. Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BO, Salehi-Ashtiani K, Papin JA (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518

    Article  CAS  Google Scholar 

  145. Baroukh C, Muñoz-Tamayo R, Steyer J-P, Bernard O (2015) A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production. Metab Eng 30:49–60

    Article  CAS  Google Scholar 

  146. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  Google Scholar 

  147. Moore LR (2013) More mixotrophy in the marine microbial mix. Proc Natl Acad Sci U S A 110(21):8323–8324

    Article  CAS  Google Scholar 

  148. Baroukh C, Munoz-Tamayo R, Bernard O, Steyer JP (2015) Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production. Curr Opin Biotechnol 33:198–205

    Article  CAS  Google Scholar 

  149. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340

    Article  CAS  Google Scholar 

  150. Erdrich P, Knoop H, Steuer R, Klamt S (2014) Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb Cell Fact 13(1):128

    Article  CAS  Google Scholar 

  151. Hädicke O, Klamt S (2010) CASOP: a computational approach for strain optimization aiming at high productivity. J Biotechnol 147(2):88–101

    Article  CAS  Google Scholar 

  152. Hädicke O, Klamt S (2011) Computing complex metabolic intervention strategies using constrained minimal cut sets. Metab Eng 13(2):204–213

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by King Mongkut’s University of Technology Thonburi through the ‘KMUTT 55th Anniversary Commemorative Fund’, the National Center for Genetic Engineering and Biotechnology (BIOTEC), NSTDA, Thailand (P-11-01089), Science Achievement Scholarship of Thailand (SAST), The Thailand Research Fund (TRG5880245), and Preproposal Research Fund (PRF4/2558 and PRF-PII/59) and Department of Zoology, Faculty of Science, Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asawin Meechai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klanchui, A., Raethong, N., Prommeenate, P., Vongsangnak, W., Meechai, A. (2016). Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling. In: Nookaew, I. (eds) Network Biology. Advances in Biochemical Engineering/Biotechnology, vol 160. Springer, Cham. https://doi.org/10.1007/10_2016_42

Download citation

Publish with us

Policies and ethics