Skip to main content

Microbial Production of Amino Acid-Related Compounds

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 159))

Abstract

Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Wendisch VF (2007) Amino acid biosynthesis – pathways, regulation and metabolic engineering. Springer, Heidelberg

    Book  Google Scholar 

  3. Mitsuhashi S (2014) Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Curr Opin Biotechnol 26:38–44

    Article  CAS  PubMed  Google Scholar 

  4. Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9(3):268–274

    Article  CAS  PubMed  Google Scholar 

  5. Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6(2):87–102

    Article  PubMed  Google Scholar 

  6. Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes – example: amino acids. J Biotechnol 129(2):181–190

    Article  CAS  PubMed  Google Scholar 

  7. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124(1):74–92

    Article  CAS  PubMed  Google Scholar 

  8. Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth G, Zelder O, Wittmann C (2014) From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123

    Article  CAS  PubMed  Google Scholar 

  9. Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58

    Article  CAS  PubMed  Google Scholar 

  10. Zahoor A, Lindner SN, Wendisch VF (2012) Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 3:e201210004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Becker J, Wittmann C (2015) Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angew Chem 127(11):3195–3589

    Article  Google Scholar 

  12. Schaffer S, Haas T (2014) Biocatalytic and fermentative production of α, ω-bifunctional polymer precursors. Org Process Res Dev 18(6):752–766

    Article  CAS  Google Scholar 

  13. Zahoor A, Otten A, Wendisch VF (2014) Metabolic engineering of Corynebacterium glutamicum for glycolate production. J Biotechnol 192:366–375

    Article  CAS  PubMed  Google Scholar 

  14. Wieschalka S, Blombach B, Eikmanns BJ (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94(2):449–459

    Article  CAS  PubMed  Google Scholar 

  15. Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH (2012) Disruption of genes for the enhanced biosynthesis of alpha-ketoglutarate in Corynebacterium glutamicum. Can J Microbiol 58(3):278–286

    Article  CAS  PubMed  Google Scholar 

  16. Krause FS, Blombach B, Eikmanns BJ (2010) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76(24):8053–8061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B (2013) Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate. Appl Environ Microbiol 79(18):5566–5575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 78(3):865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buckle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ (2014) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol 98(1):297–311

    Article  PubMed  Google Scholar 

  20. Vogt M, Haas S, Polen T, van Ooyen J, Bott M (2015) Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes. Microb Biotechnol 8(2):351–360

    Article  CAS  PubMed  Google Scholar 

  21. Brune I, Jochmann N, Brinkrolf K, Hüser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Pühler A, Tauch A (2007) The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J Bacteriol 189(7):2720–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M (2013) Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum. J Bacteriol 195(18):4283–4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Claes WA, Puhler A, Kalinowski J (2002) Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. J Bacteriol 184(10):2728–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    Article  CAS  PubMed  Google Scholar 

  25. Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20(3):307–315

    Article  CAS  PubMed  Google Scholar 

  26. Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17(3):462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li H, Cann AF, Liao JC (2010) Biofuels: biomolecular engineering fundamentals and advances. Annu Rev Chem Biomol Eng 1:19–36

    Article  CAS  PubMed  Google Scholar 

  28. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  PubMed  Google Scholar 

  29. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77(10):3300–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87(3):1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blombach B, Eikmanns BJ (2011) Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs 2(6):346–350

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, Inui M (2015) Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(3):1165–1172

    Article  CAS  PubMed  Google Scholar 

  33. Lee B, Lee S, Kim H, Jeong K, Park J, Park K, Lee J (2015) Whole cell bioconversion of ricinoleic acid to 12-ketooleic acid by recombinant Corynebacterium glutamicum-based biocatalyst. J Microbiol Biotechnol. doi:10.4014/jmb.1501.01001

    Google Scholar 

  34. Lee B, Lee S, Kim H, Jeong K, Park J, Lee E, Lee J (2015) Biotransformation of oleic acid into 10-ketostearic acid by recombinant Corynebacterium glutamicum-based biocatalyst. Biotechnol Lett. doi:10.1007/s10529-015-1775-7

    Google Scholar 

  35. Schneider J, Wendisch VF (2011) Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91(1):17–30

    Article  CAS  PubMed  Google Scholar 

  36. Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88(4):859–868

    Article  CAS  PubMed  Google Scholar 

  37. Hadiati A, Krahn I, Lindner SN, Wendisch VF (2014) Engineering of Corynebacterium glutamicum for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids. Bioresour Bioprocess 1:25

    Article  Google Scholar 

  38. Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258

    Article  CAS  PubMed  Google Scholar 

  39. Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K (2013) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol 97(4):1679–1687

    Article  CAS  PubMed  Google Scholar 

  40. Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM (2014) Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol 98(12):5633–5643

    Article  CAS  PubMed  Google Scholar 

  41. Schneider J, Eberhardt D, Wendisch VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95(1):169–178

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen AQ, Schneider J, Wendisch VF (2015) Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 201:75–85

    Article  CAS  PubMed  Google Scholar 

  43. Kind S, Jeong WK, Schroder H, Zelder O, Wittmann C (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76(15):5175–5180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen AQ, Schneider J, Reddy GK, Wendisch VF (2015) Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum. Metabolites 5:211–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135

    Article  CAS  PubMed  Google Scholar 

  46. Ikeda N, Miyamoto M, Adachi N, Nakano M, Tanaka T, Kondo A (2013) Direct cadaverine production from cellobiose using beta-glucosidase displaying Escherichia coli. AMB Express 3:67

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qian ZG, Xia XX, Lee SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108(1):93–103

    Article  CAS  PubMed  Google Scholar 

  48. Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF (2015) Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb Biotechnol 8(2):342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buschke N, Becker J, Schafer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8(5):557–570

    Article  CAS  PubMed  Google Scholar 

  50. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82(1):115–121

    Article  CAS  PubMed  Google Scholar 

  51. Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, Lu F (2014) Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter. J Ind Microbiol Biotechnol 41(4):701–709

    Article  CAS  PubMed  Google Scholar 

  52. Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisakova V, Patek M, Kalinowski J, Brune I, Pühler A, Tauch A (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71(6):3255–3268

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sahm H, Eggeling L (1999) D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction. Appl Environ Microbiol 65(5):1973–1979

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shen Y, Zhao L, Li Y, Zhang L, Shi G (2014) Synthesis of beta-alanine from L-aspartate using L-aspartate-alpha-decarboxylase from Corynebacterium glutamicum. Biotechnol Lett 36(8):1681–1686

    Article  CAS  PubMed  Google Scholar 

  55. Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ (2015) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact 14(1):205

    Article  Google Scholar 

  56. Shi F, Jiang J, Li Y, Xie Y (2013) Enhancement of gamma-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol 40(11):1285–1296

    Article  CAS  PubMed  Google Scholar 

  57. Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 51(3):171–176

    Article  CAS  PubMed  Google Scholar 

  58. Zhao Z, Ding JY, Ma WH, Zhou NY, Liu SJ (2012) Identification and characterization of gamma-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum. Appl Environ Microbiol 78(8):2596–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281(18):12300–12307

    Article  CAS  PubMed  Google Scholar 

  60. Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74(3):724–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Okai N, Takahashi C, Hatada K, Ogino C, Kondo A (2014) Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express 4:20

    Article  PubMed  PubMed Central  Google Scholar 

  62. Adkins J, Jordan J, Nielsen DR (2013) Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol Bioeng 110:1726–1734

    Article  CAS  PubMed  Google Scholar 

  63. Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 16:42–47

    Article  CAS  PubMed  Google Scholar 

  64. Soarez PC, Oliveira AC, Padovan J, Parise ER, Ferraz MB (2009) A critical analysis of studies assessing L-ornithine-L-aspartate (LOLA) in hepatic encephalopathy treatment. Arq Gastroenterol 46(3):241–247

    Article  PubMed  Google Scholar 

  65. Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154(2–3):191–198

    Article  CAS  PubMed  Google Scholar 

  66. Hwang JH, Hwang GH, Cho JY (2008) Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum. J Microbiol Biotechnol 18(4):704–710

    CAS  PubMed  Google Scholar 

  67. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131–140

    Article  PubMed  Google Scholar 

  68. Zhang YY, Bu YF, Liu JZ (2014) Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum. Folia Microbiol (Praha) 60(5):393–398

    Article  Google Scholar 

  69. Jiang LY, Chen SG, Zhang YY, Liu JZ (2013) Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol 13:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF (2010) Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol 87(2):583–593

    Article  CAS  PubMed  Google Scholar 

  71. Jiang LY, Zhang YY, Li Z, Liu JZ (2013) Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 40(10):1143–1151

    Article  CAS  PubMed  Google Scholar 

  72. Reddy GK, Wendisch VF (2014) Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiol 14:54

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kim SY, Lee J, Lee SY (2015) Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol Bioeng 112(2):416–421

    Article  CAS  PubMed  Google Scholar 

  74. Kim DJ, Hwang GH, Um JN, Cho JY (2015) Increased L-ornithine production in Corynebacterium glutamicum by overexpression of a gene encoding a putative aminotransferase. J Mol Microbiol Biotechnol 25(1):45–50

    Article  CAS  PubMed  Google Scholar 

  75. Hwang GH, Cho JY (2014) Enhancement of L-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 41(3):573–578. doi:10.1007/s10295-013-1398-8

    Article  CAS  PubMed  Google Scholar 

  76. Eberhardt D, Jensen JV, Wendisch VF (2014) L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 4:85

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jensen JV, Wendisch VF (2013) Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact 12:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Falcioni F, Buhler B, Schmid A (2015) Efficient hydroxyproline production from glucose in minimal media by Corynebacterium glutamicum. Biotechnol Bioeng 112(2):322–330

    Article  CAS  PubMed  Google Scholar 

  79. Yi Y, Sheng H, Li Z, Ye Q (2014) Biosynthesis of trans-4-hydroxyproline by recombinant strains of Corynebacterium glutamicum and Escherichia coli. BMC Biotechnol 14:44

    Article  PubMed  PubMed Central  Google Scholar 

  80. Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, Bremer E, Wittmann C (2013) Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact 12:110

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stabler N, Oikawa T, Bott M, Eggeling L (2011) Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. J Bacteriol 193(7):1702–1709

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wendisch, V.F. (2016). Microbial Production of Amino Acid-Related Compounds. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_34

Download citation

Publish with us

Policies and ethics