Skip to main content

Anaerobic Probiotics: The Key Microbes for Human Health

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 156))

Abstract

Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASD:

Autism spectrum disorders

ATCC:

American type culture collection

ATP:

Adenosine triphosphate

BSH:

Bile salt hydrolase

CAGR:

Compound annual growth rate

CFU:

Colony forming unit

CLB:

Liver cysteine lactose

FDA:

Food and Drug Administration

FOS:

Fructooligosaccharides

GIT:

Gastro intestinal tract

GRAS:

Generally regarded as safe

HGIM:

Human gastrointestinal microbiota

IBS:

Irritable bowel syndrome

LAB:

Lactic acid bacteria

MERCOSUR:

Mercado Común del Sur (Common Market of South)

MRS:

Man–Rogosa–Sharp medium

NYA:

National Yoghurt Association

NRSP:

Natural rubber serum powder

RCM:

Reinforced clostridia medium

sEPS:

Surface exopolysaccharides

SMF:

Submerged fermentation

SSF:

Solid state fermentation

TPY:

Trypticase-phytone-yeast extract

WHO:

World Health Organization

References

  1. Ley RE, Peterson DA, Gordon JL (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  Google Scholar 

  2. Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  Google Scholar 

  3. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785

    Article  CAS  Google Scholar 

  4. Fuller R (1989) A review: probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  Google Scholar 

  5. Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Brit J Nutr 88:S39–S49

    Article  CAS  Google Scholar 

  6. Leahy SC, Higgins DG, Fitzgerald GF, van Sinderen D (2005) Getting better with bifidobacteria. J Appl Microbiol 98:1303–1315

    Article  CAS  Google Scholar 

  7. Muller JA, Ross RP, Fitzgerald GF, Stanton C (2009) Manufacture of probiotic bacteria. In: Charalampopulos D, Rastall R (eds) Prebiotics and probiotics science and technology. Springer, Heidelberg, pp 725–759

    Chapter  Google Scholar 

  8. Sarmidi MR, El Enshasy HA (2012) Biotechnology for wellness industry: concepts and biofactories. Int J Biotechnol Well Ind 1:3–28

    Google Scholar 

  9. Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277

    Article  Google Scholar 

  10. Forssten SD, Sindelar CW, Ouwehand AC (2011) Probiotics from an industrial perspective. J Clin Microbiol 17:410–413

    Google Scholar 

  11. Salminen S, Isolauri E, Salminen E (1996) Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie van Leeuwenhoek 70:347–358

    Article  CAS  Google Scholar 

  12. Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau M-C, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Brit J Nutr 80(Suppl 1):S147–S171

    Google Scholar 

  13. BourliouxP KB, Guarner F, Braesco B (2003) The intestine and its microflora are partners for the protection of the host. Am J Clin Nutr 78:675–683

    Google Scholar 

  14. Villena J, Salva S, Nuñez M, Corzo J, Tolaba R, Faedda J, Font G, Alvarez S (2012) Probiotics for everyone! The novel immunobiotic Lactobacillus rhamnosus CRL1505 and the beginning of social probiotic programs in Argentina. Int J Biotechnol Well Ind 1:189–198

    Google Scholar 

  15. Heyman M, Menard S (2002) Probiotic microorganisms: how they affect intestinal pathophysiology. Cell Mol Life Sci 59:1–15

    Article  Google Scholar 

  16. Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    Article  CAS  Google Scholar 

  17. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS (2015) A randomized controlled trial to test the effect of multi species probiotics on cognitive reactivity to sad mood. Brain Behav Immunity 48:258–264

    Article  Google Scholar 

  18. Lew L-C, Gan C-Y, Liong M-T (2013) Dermal bioactives from lactobacilli and bifidobacteria. Ann Microbiol 63:1047–1055

    Article  CAS  Google Scholar 

  19. Raja BR, Arunachalam KD (2011) Market potential for probiotic nutritional supplements in India. Afr J Business Manag 5:5418–5423

    Google Scholar 

  20. Markets and Markets (2014) Global probiotics market worth US$32.6 billion by 2014. http://www.prnewswire.com/news-releases/marketsandmarkets-global-probiotics-market-worth-us326-billion-by-2014-62565667.html. Accessed 10 June 2015

  21. Saxelin M, Tynkkynen S, Mattila-Sandholom T, de Vos WM (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 16:204–211

    Article  CAS  Google Scholar 

  22. Mättö J, Alakomi H-L, Vaari A, Virkajärvi I, Saarela M (2006) Influence of processing conditions on Bifidobacterium animalis subsp. lactis functionality with a special focus on acid tolerance and factors affecting it. Int Dairy J 16:1029–1037

    Article  CAS  Google Scholar 

  23. Vergari F, Tibuzzi A, Basile G (2010) An overview of the functional food market: from marketing issues and commercial players to future demand from life in space, “Bio-farms for nutraceuticals”. In: Giardi MT, Rea G, Berra B (eds) Advances in experimental medicine and biology. Springer, Berlin, pp 308–321

    Google Scholar 

  24. Meena GS, Gupta S, Majumdar GC, Banerjee R (2011) Growth characteristics modelling of Bifidobacterium bifidum using RSM and ANN. Braz Arch Biol Technol 54:1357–1366

    Article  CAS  Google Scholar 

  25. Bhadoria PBS, Mahapatra SC (2011) Prospects, technological aspects and limitations of probiotics – a worldwide review. Eur J Food Res Rev 1:23–42

    Google Scholar 

  26. Philippe D, Heupel E, Blum-Sperisen S, Riedel CU (2011) Treatment with Bifidobacterium bifidum 17 partially protects mice from Th1-driven inflammation in a chemically induced model of colitis. Int J Food Microbiol 149:45–49

    Article  CAS  Google Scholar 

  27. Jalili H, Razavi SH, Safari M, Malcata FX (2009) Enhancement of growth rate and β-galactosidase activity, and variation in organic acid profile of Bifidobacterium animalis subsp. lactis Bb 12. Enz Microb Technol 45:469–476

    Article  CAS  Google Scholar 

  28. Kabeerdoss J, Devi RS, Mary RR, Prabhavathi D, Vidya R, Mechenro J, Mahendri NV, Pugazhendhi S, Ramakrishna BS (2011) Effect of yoghurt containing Bifidobacterium lactis Bb12® on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers. Nutr J 23; 10:138.

    Google Scholar 

  29. Su P, Henriksson A, Mitchell H (2007) Selected prebiotics support the growth of prebiotic mono-cultures in vitro. Anaerobe 13:134–139

    Article  CAS  Google Scholar 

  30. Siro I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food: product development, marketing and consumer acceptance – a review. Appetite 51:456–467

    Article  Google Scholar 

  31. Mayer HK, Amtmann E, Philippi E, Steinegger G, Mayrhofer S, Kneifel W (2007) Molecular discrimination of new isolates of Bifidobacterium animalis subsp lactis from reference strains and commercial probiotic strains. Int Dairy J 17:565–573

    Article  CAS  Google Scholar 

  32. Bonannoxs A (2012) Some like it healthy: demand for functional and conventional yogurts in the Italian market. Agribusiness 28:67–85

    Article  Google Scholar 

  33. Grmanová M, Vlková E, Rada V, Homutová I (2010) Survival of Bifidobacteria in adult intestinal tract. Folia Microbiol 55:281–285

    Article  CAS  Google Scholar 

  34. Kopećnỳ J, Mrázek J, Killer J (2010) The presence of Bifidobacteria in social insects, fish and reptiles. Folia Microbiol 55:336–339

    Article  CAS  Google Scholar 

  35. Buchanan RE (1974) Bergey’s manual of determinative bacteriology, 8th edn. NEE Gibbons, Williams and Wilkins, Baltimore

    Google Scholar 

  36. Mitsuoka T (1992) The human gastrointestinal tract. In: Wood BJB (ed) The lactic acid bacteria in health and disease. Elsevier, Amsterdam, pp 69–114

    Google Scholar 

  37. Reimann S, Grattepanche F, Benz R, Mozetti V, Rezzonico E, Berger B, Lacroix C (2011) Improved tolerance to bile salts aggregated Bifidobacterium longum produced during continuous culture with immobilized cells. Bioresour Technol 102:4559–4567

    Article  CAS  Google Scholar 

  38. Bottacini F, Ventura M, van Sinderen D, Motherway MO (2014) Diversity, ecology and intestinal function of bifidobacteria. Microb Cell Fact 13(Suppl 1):S4

    Article  Google Scholar 

  39. Ventura M, van Sinderen D, Fitzgerald GF, Zink R (2004) Insights into the taxonomy, genetics and physiology of bifidobacteria. Antoine Van Leeuwenhoek 86:205–223

    Article  CAS  Google Scholar 

  40. Ventura M, Canchaya C, Dei Casale A, Dellaglio F, Neviani E, Fitzgerald GF, van Sinderen D (2006) Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 56:2783–2792

    Article  CAS  Google Scholar 

  41. Hughes D, Hoover DG (1991) Bifidobacteria their potential for use in American dairy products. J Food Technol 45:74–80

    Google Scholar 

  42. Kim HS (1988) Characterization of lactobacilli and bifidobacteria as applied to dietary adjuncts. Cult Dair Prod J 23:6–9

    Google Scholar 

  43. Ballongue J (1998) Bifidobacteria and probiotic action. In: Salminen S, von Wright A (eds) Lactic Acid Bacteria. Marcel Dekker, New York, pp 519–587

    Google Scholar 

  44. Chen B, Wang X, Zhang L (2010) Culture medium for Bifidobacterium longum, composition comprising the same and preparation method. USP, US 2010/0098667 A1

    Google Scholar 

  45. Mandar R, Mikelsaar M (1996) Transmission of mother’s microflora to the newborn at birth. Biol Neonate 96:30–35

    Article  Google Scholar 

  46. Huurre A, Kalliomaki M, Rautava S, Rinne M, Salminen S, Isolauri E (2008) Mode of delivery on gut microbiota and humoral immunity. Neonatol 93:236–240

    Article  Google Scholar 

  47. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS 107:11971–11975

    Article  Google Scholar 

  48. Othman NZ, El Enshasy HA, Abdel Malek R, Sarmidi MR, Aziz RA (2009) Kinetics of cell growth and functional characterization of probiotic strains Lactobacillus delbrueckii and Lactobacillus paracasei isolated from breast milk. Deut Lebensmittel Rund 105:444–450

    CAS  Google Scholar 

  49. Elsayed EA, Othman NZ, Malek R, Tang T, El Enshasy HA (2014) Improvement of cell mass production of Lactobacillus delbrueckii sp. bulgaricus WICC-B-02: a newly isolated probiotic strain from mother’s milk. J Appl Pharmceut Sci 4:8–14

    Google Scholar 

  50. Solís G, de los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M (2010) Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 16:307–310

    Google Scholar 

  51. Gueimonde M, Laitinen K, Salminen S, Isolauri E (2007) Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 92:64–66

    Article  Google Scholar 

  52. Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B (2014) The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediat Res 76:2–10

    Article  Google Scholar 

  53. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1402

    CAS  Google Scholar 

  54. Harmsen HJM, Wildeboer-Veloo ACM, Raangs GC, Wagendorp AA, Klijn N, Bindels JG (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67

    Article  CAS  Google Scholar 

  55. Hopkins MJ, Cummings JH, Macfarlane GT (1998) Inter-species differences in maximum specific growth rates and cell yields of Bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J Appl Microbiol 85:381–386

    Article  CAS  Google Scholar 

  56. Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2:43–53

    CAS  Google Scholar 

  57. Lacroix C, Yildirim S (2007) Fermentation technologies for the production of probiotics with high viability and functionality. J Biotechnol 18:176–183

    CAS  Google Scholar 

  58. Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Tomita M (1990) Endogenous oxygen uptake and polysaccharide accumulation in Bifidobacterium. Agric Biol Chem 54:2869–2874

    CAS  Google Scholar 

  59. Simpson PJ, Stanton C, Fitzgerald OF, Ross RP (2005) Intrinsic tolerance of Bifidobacterium longum species to heat and following spray drying and storage. J Appl Microbiol 99:493–501

    Article  CAS  Google Scholar 

  60. Andriantsoanirina V, Allano S, Butel MJ, Aries J (2013) Tolerance of Bifidobacterium human isolates to bile, acid and oxygen. Anaerobe 21:39–42

    Article  CAS  Google Scholar 

  61. Meile L, Ludwig W, Rueger U, Gut C, Kaufmann P, Dasen G, Wenger S, Teuber M (1997) Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Syst Appl Microbiol 20:57–64

    Article  Google Scholar 

  62. Ninomiya K, Matsuda K, Kawahat T, Kanaya T, Kohno M, Katakura Y, Masanori A, Shioya S (2009) Effect of CO2 concentration on the growth and exopolysaccharide production of Bifidobacterium longum cultivated under anaerobic conditions. J Biosci Bioeng 107:535–537

    Article  CAS  Google Scholar 

  63. Kleerebezem M, Vaughan EE (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290

    Article  CAS  Google Scholar 

  64. Tanaka H (2000) Bile salts hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl Environ Microbiol 66:2502–2512

    Article  CAS  Google Scholar 

  65. Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14:737–743

    Article  CAS  Google Scholar 

  66. Takahashi N, Xiao JZ, Miyaji K, Yaeshiima T, Hiramatsu A, Iwatsuki K, Kokubo S, Hosono A (2004) Selection of acid tolerant bifidobacteria and evidence for a low-pH-inducible acid tolerance response in Bifidobacterium longum. J Dairy Res 71:340–345

    Article  CAS  Google Scholar 

  67. Tham CSC, Peh KK, Bhat R, Liong MT (2011) Probiotic properties of bifidobacteria and lactobacilli isolated from local dairy products. Ann Microbiol 62:1079–1087

    Article  CAS  Google Scholar 

  68. Sonnenburg ED, Sonnenburg JL, Manchester JK, Hansen EE, Chiang HC, Gordon JI (2006) A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism. Proc Natl Acad Sci USA 103:8834–8839

    Article  CAS  Google Scholar 

  69. Rautava S, Walker WA (2007) Commensal bacteria and epithelial cross talk in the developing intestine. Curr Gastroenterol Rep 9:385–392

    Article  Google Scholar 

  70. Guglielmetti S, De Noni I, Caracciolo F, Molinari F, Parini C, Mora D (2008) Bacterial cinnamoyl esterase activity screening for the production of a novel functional food product. Appl Environ Microbiol 74:1284–1288

    Article  CAS  Google Scholar 

  71. Serafini F, StratiF R-MP, Turroni F, Foroni E, Duranti S, Milano F, Perotti A, Viappiani A, Guglielmetti S, Buschini A, Margolles A, van Sinderen D, Ventura M (2013) Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe 21:9–17

    Article  CAS  Google Scholar 

  72. Rahman MM, Kim W-S, Kumura H, Shimazaki K-I (2008) Auto aggregation and surface hydrophobicity of bifidobacteria. World J Microbiol Biotechnol 24:1593–1598

    Article  CAS  Google Scholar 

  73. O’Connell Motherway M, Zomer A, Leathy SC, Reunanen J, Bottacini F, Claesson MJ, O’Brien F, Flynn K, Casey PG, Munoz JAM, Bearney B, Houston AM, O’Mahony C, Higgins DG, Shanahan F, Palva A, de Vos WM, Fitzgerald GF, Ventura M, O’Toole PW, van Sinderen D (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci USA 108:11217–11222

    Article  Google Scholar 

  74. Fanning S, Hall IJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan K, Dougan G, van Sinderen D (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 109:2108–2113

    Article  CAS  Google Scholar 

  75. Fanning S, Hall LJ, van Sinderen D (2012) Bifidobacterium breve UCC2003 surface exopolysaccharide production is a beneficial trait mediating commensal-host interaction through immune modulation and pathogen protection. Gut Microbes 3:420–425

    Article  Google Scholar 

  76. Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P (2014) Genomic overview and biological function of exopolysaccahride biosynthesis in Bifodobacterium spp. Appl Env Microbiol 80:9–18

    Article  CAS  Google Scholar 

  77. Ebhodaghe SO, Abiose SH, Adeniran HA (2012) Assessment of physico-chemical characteristics, viability and inhibitory effect of Bifidobacteria in soymilk. J Food Res 1:159–170

    Article  CAS  Google Scholar 

  78. Cheikhyoussef A, Cheikhyoussef N, Chen H, Zhao J, Tang J, Zhang H, Chen W (2010) Bifidin 1 - a new bacteriocin produced by Bifidobacterium infantis BCRC 14602: purification and partial amino acid sequence. Food Control 21:746–753

    Article  CAS  Google Scholar 

  79. Yildirim Z, Winters D, Johnson M (1999) Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J Appl Microbiol 86:45–54

    Article  CAS  Google Scholar 

  80. Lee JH, Li X, O’Sullivan DJ (2011) Transcription analysis of a lantibiotic gene cluster from Bifidobacterium longum DJO10A. Appl Environ Microbiol 77:5879–5887

    Article  CAS  Google Scholar 

  81. Martinez FAC, Balciunas EM, Converti A, Cotter PD, de Souza Oliveira RP (2013) Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv 31:482–488

    Article  CAS  Google Scholar 

  82. Arora M, Sharma S, Baldi A (2013) Comparative insight of regulatory guidelines for probiotics in USA, India and Malaysia: a critical review. Int J Biotechnol Well Ind 2:51–64

    CAS  Google Scholar 

  83. Talwalkar A, Kailasapathy K (2004) A review of oxygen toxicity in probiotic yogurts: influence on the survival of probiotic bacteria and protective technique. Comp Rev Food Sci Food Safety 13:117–124

    Article  Google Scholar 

  84. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  Google Scholar 

  85. Jose NM, Bunt CR, Hussain MA (2015) Comparison of microbiological and probiotic characteristics of Lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms 3:198–212

    Article  Google Scholar 

  86. Vandamme TF, Lenourry A, Charrueau C, Chaumeil J-C (2002) The use of polysaccharides to target drugs to the colon. Carbohyd Polym 48:219–231

    Article  CAS  Google Scholar 

  87. Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46:183–196

    CAS  Google Scholar 

  88. Mozzetti V, Grattepanche F, Moine D, Berger B, Rezzonico E (2010) New method for selection of hydrogen peroxide adapted bifidobacteria cells using continuous culture and immobilized cell technology. Microb Cell Fact 9:60

    Article  CAS  Google Scholar 

  89. Lui LS, Fishman ML, Kost J, Hicks KB (2003) Pectin-based systems for colon specific drug delivery via oral route. Biomaterials 24:3333–3343

    Article  CAS  Google Scholar 

  90. Gomes AMP, Malcata FX (1999) Bifidobacterium sp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 10:139–157

    Article  CAS  Google Scholar 

  91. Singh J (1997) Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 18:833–841

    Article  CAS  Google Scholar 

  92. Her SL, Duan KJ, Sheu DC, Lin CT (2004) A repeated batch process for cultivation of Bifidobacterium longum. J Ind Microbiol Biotechnol 31:427–432

    Article  CAS  Google Scholar 

  93. O’Mahony D, Murphy S, Boileau T, Park JS, O’Brien F, Groeger D, Konileczna P, Ziegler M, Scully P, Shanahan F, Kiely B, O’Mahony L (2010) Bifidobacterium animalis AHC7 protects against pathogen-induced NF-κB activation in vivo. BMC Immunol 11:63

    Article  CAS  Google Scholar 

  94. Donkor ON, Vasiljevic T, Gill HS (2010) Probiotics and immunomodulation. In: Watson RR, Zibadi S, Preedy VR (eds) Dietary components and immune function, Nutrition and Health Series. Springer, New York, pp 625–655

    Chapter  Google Scholar 

  95. Ashraf R, Shah NP (2014) Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr 54:938–956

    Article  CAS  Google Scholar 

  96. Tannock GW (2004) A special fondness for Lactobacilli. Appl Environ Microbiol 70:3189–3194

    Article  CAS  Google Scholar 

  97. Reid G (1999) The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol 65:3763–3766

    CAS  Google Scholar 

  98. Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23:187–192

    Article  CAS  Google Scholar 

  99. Mayer EA (2011) Gut feelings: the emerging biology of gut-brain communication. Nat Rec Neurosci 12:453–466

    Article  CAS  Google Scholar 

  100. Mayer EA, Knight R, Mazmanian SK, Gryan JF, Tillisch K (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34:15490–15496

    Article  Google Scholar 

  101. Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E IV, Taylor CM, Welsh DA, Berthoud HR (2015) Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 77:607–615

    Article  Google Scholar 

  102. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacterium infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43:164–174

    Article  Google Scholar 

  103. Langkamp-Henken B, Rowe CC, Ford AL, Christman MC, Nieves C Jr, Khouri L, Specht GJ, Girard SA, Spaiser SJ, Dahl WJ (2015) Bifidobacterium bifidum R0071 results in a greater proportion of healthy days and a lower percentage of academically stressed students reporting a day of cold/flu: a randomized, double-blind, placebo-controlled study. Brit J Nutr 113:426–434

    Article  CAS  Google Scholar 

  104. Hsiao EY (2014) Gastrointestinal issues in autism spectrum disorder. Harvard Rev Psych 22:104–111

    Article  Google Scholar 

  105. Critchfield JW, van Hemert S, Ash M, Mulder L, Ashwood P (2011) The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract 2011:161358

    Article  Google Scholar 

  106. Iemoli E, Trabattoni D, Parisotto S, Borgonovo L, Toscano M, RizzaridiniG CM, Ricci E, Fusi A, De Vecchi E, Piconi S, Drago L (2012) Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J Clin Gastroenterol 46(Suppl):S33–S40

    Article  Google Scholar 

  107. Yoshida Y, Seki T, Matsunaka H, Watanabe T, Shindo M, Yamada N, Yamamoto O (2010) Clinical effects of probiotic Bifidobacterium breve supplementation in adult patients with atopic dermatitis. Yonago Acta Medica 53:37–45

    Google Scholar 

  108. De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng/Biotechnol 111:1–66

    Article  Google Scholar 

  109. Wang Y-C, Yu R-C, Chou C-C (2002) Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiol 19:501–508

    Article  Google Scholar 

  110. Lin DC (2003) Probiotics as functional foods. Nutr Clin Pract 18:497–506

    Article  Google Scholar 

  111. Gill H, Guarner F (2004) Probiotics and human health: a clinical perspective. Postgrad Med J 80:516–526

    Article  CAS  Google Scholar 

  112. De Vrese M (2003) Effects of probiotic bacteria on gastrointestinal symptoms, Helicobacter pylori activity and antibiotics-induced diarrhoea. Gastroenterol 124:A560

    Article  Google Scholar 

  113. Kwon SG, Son JW, Kim HJ, Park CS, Lee JK, Ji GE, Oh DK (2006) High concentration cultivation of Bifidobacterium bifidum in a submerged membrane bioreactor. Biotechnol Prog 22:1591–1597

    CAS  Google Scholar 

  114. Zampa A, Silvi S, Fabiani R, Morozzi G, Orpianesi C, Cresci A (2004) Effects of different digestible carbohydrates on bile acid metabolism and SCFA production by human gut micro-flora grown in an in vitro semi-continuous culture. Anaerobe 10:19–26

    Article  CAS  Google Scholar 

  115. Martin R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humaran LG (2013) Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 12:71

    Article  Google Scholar 

  116. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168

    Article  CAS  Google Scholar 

  117. Gibson GR, Wang X (2008) Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412–420

    Article  Google Scholar 

  118. Jeon SG, Kayama H, Ueda Y, Takahashi T, Asahara T, Tsuji H, Tsuji NM, Kiyono H, Ma JS, Kusu T, Okumura R, Hara H, Yoshida H, Yamamoto M, Momoto T (2012) Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLOS Pathog 8(5), e1002714

    Article  CAS  Google Scholar 

  119. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifodobacterium infantis in the materials separation model of depression. Neuroscience 170:1179–1188

    Article  CAS  Google Scholar 

  120. Kaplan H, Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and Bifidobacteria. Appl Environ Microbiol 66:2682–2684

    Article  CAS  Google Scholar 

  121. Han R, Ebert EC, Zhao Z, Li L, Zhang H, Ian R (2005) Novel characteristics of Bifidobacterium bifidum in solid state fermentation system. World J Micrbiol Biotechnol 21:1245–1248

    Article  CAS  Google Scholar 

  122. Yu Z, Dong B, Lu W (2009) Dynamics of bacterial community in solid state fermented feed revealed by 16S rRNA. Lett Appl Microbiol 49:166–172

    Article  CAS  Google Scholar 

  123. Rodriguez de Olmos A, Bru E, Garro MS (2015) Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation. Int J Food Microbiol 196:16–23

    Article  CAS  Google Scholar 

  124. Kouya T, Ishiyama Y, Tanaka T, Taniguchi M (2013) Evaluation of positive interaction for cell growth between Bifidobacterium adolescentis and Propionibacterium freudenreichii using a co-cultivation system with two microfiltration modules. J Biosci Bioeng 115:189–192

    Article  CAS  Google Scholar 

  125. Oliveira RPS, Perego P, Oliveira MN, Converti A (2012) Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: the inulin effect. Food Res Int 48:21–27

    Article  CAS  Google Scholar 

  126. Hsu CA, Yu RC, Lee SL, Chou CC (2007) Cultural condition affecting the growth and production of β-galactosidase by Bifidobacterium longum CCRC 15708 in a jar fermenter. Int J Food Microbiol 116:186–189

    Article  CAS  Google Scholar 

  127. Doleyres Y (2002) Bifidobacterium longum ATCC 15707 Cell Production during free and immobilized cell cultures in MRS-whey permeate medium. Appl Microbiol Biotechnol 60:168–173

    Article  CAS  Google Scholar 

  128. Roy D (2001) Media for the isolation and enumeration of bifidobacteria in dairy products. Int J Food Microbiol 69:167–182

    Article  CAS  Google Scholar 

  129. Amaretti A, Bernardi T, Tamburini E, Zanoni S, Lomma M, Matteuzzi D, Rossi M (2007) Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose and galactooligosaccharides. Appl Environ Microbiol 73:3637–3644

    Article  CAS  Google Scholar 

  130. Mlobeli NT, Gutierrez NA, Maddox IS (1998) Physiology and kinetics of Bifidobacterium bifidum during growth on different sugars. Appl Microbiol Biotechnol 50:125–128

    Article  CAS  Google Scholar 

  131. Parche S, Amon J, Jankovic I, Rezzonico E, Beleut M, Barutçu H, Schendel I, Eddy MP, Burkovski A, Arigoni F, Titgemeyer F (2007) Sugar transport system of Bifidobacterium longum NCC2705. J Mol Microbiol Biotechnol 12:9–19

    Article  CAS  Google Scholar 

  132. Kim TB, Song SH, Kang SC, Oh DK (2003) Quantitative comparison of lactose and glucose utilization in Bifidobacterium longum cultures. Biotechnol Prog 19:672–675

    Article  CAS  Google Scholar 

  133. Etoh S, Sonomoto K, Ishizaki A (1999) Complementary effects of bifidogenic growth stimulators and ammonium sulfate in natural rubber serum powder on Bifidobacterium bifidum. J Biosci Biotechnol Biochem 63:627–631

    Article  CAS  Google Scholar 

  134. Mayo B, Aleksandrzak-Piekarczyk T, Fernández M, Kowalczyk M, Pablo Álvarez-Martín P, Bardowski J (2010) Updates in the metabolism of lactic acid bacteria. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid bacteria: novel applications. Wiley-Blackwell, Iowa, pp 3–33

    Chapter  Google Scholar 

  135. Fandi KG, Ghazali HM, YazidAM RAR (2001) Purification and N-terminal amino acid sequence of fructose-6-phosphate phosphoketolase from Bifidobacterium longum BB536. Lett Appl Microbiol 32:235–239

    Article  CAS  Google Scholar 

  136. Pokusaeva K, Motherway MO, Zomer A, MacSharry J, Fitzgerald GF, Sinderen DV (2011) Cellodextrin utilization by Bifidobacterium breve UCC2003. Appl Environ Microbiol 77:1681–1690

    Article  CAS  Google Scholar 

  137. Scardovi V (1986) Bifidobacterium. In: Sneath PH, Mair NS, Sharpe ME, Holt JG (eds) Bergey's Manual of Systematic Bacteriology, vol 2, 9th edn. Williams and Wilkins, Baltimore, p 1418

    Google Scholar 

  138. de Vries W, Stouthamer AH (1967) Pathway of glucose fermentation in relation to the taxonomy of Bifidobacteria. J Bacteriol 93:574–576

    Google Scholar 

  139. Cronin M, Ventura M, Fitzgerald GF, Sinderen DV (2011) Progress in genomics, metabolism, and biotechnology of bifidobacteria. Int J Food Microbiol 149:4–18

    Article  CAS  Google Scholar 

  140. Gonzalez R, Blancas A, Santillana R, Azaola A, Wacher C (2004) Growth and final product formation by Bifidobacterium infantis in aerated fermentations. Appl Microbiol Biotechnol 65:606–610

    Article  CAS  Google Scholar 

  141. Shene C, Mardones M, Zamora P, Bravo S (2005) Kinetics of Bifidobacterium longumATCC 15707 fermentations: effect of the dilution rate and carbon source. Appl Microbiol Biotechnol 67:623–630

    Article  CAS  Google Scholar 

  142. Biavati B, Vescovo M, Torriani S, Bottazzi V (2000) Bifidobacteria: history, ecology, physiology and applications. Annals Microbiol 50:117–132

    Google Scholar 

  143. Nguyen TMP, Lee YK, Zhou W (2012) Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. J food Chem 130:866–874

    Article  CAS  Google Scholar 

  144. Caescu CI, Vidal O, Krzewinski F, Artenie V, Bouquelet S (2004) Bifidobacterium longum requires a fructokinase (Frk; ATP:D-fructorse 6-phosphotransferase, EC 2.7.1.4) for fructose catabolism. J Bacteriol 186:6515–6525

    Article  CAS  Google Scholar 

  145. Thitaram SN, Siragusa GR, Hinton A Jr (2005) Bifidobacterium-selective isolation and enumeration from chicken caeca by a modified oligosaccharide antibiotic-selective agar medium. Lett Appl Microbiol 41:355–360

    Article  CAS  Google Scholar 

  146. Poch M, Bezkorovainy A (1988) Growth-enhancing supplements for various species of the genus Bifidobacterium. J Dairy Sci 71:3214–3221

    Article  CAS  Google Scholar 

  147. Giridhar R, Srivastava AK (2000) Fed-batch sorbose fermentation using pulse and multiple feeding strategies for productivity improvement. Biotechnol Bioprocess Eng 5:340–344

    Article  CAS  Google Scholar 

  148. Guerra NP, Agrasar AT, Macias CL, Bernardez PF, Castro LP (2007) Dynamic mathematical models to describe the growth and nisin production by Lactococcuslactis subsp. lactis CECT 539 in both batch and re-alkalized fed-batch cultures. J Food Eng 82:103–113

    Article  CAS  Google Scholar 

  149. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50:521–542

    Article  CAS  Google Scholar 

  150. Jung I, Oh MK, Cho YC, Kong IS (2011) The viability to a wall shear stress and propagation of Bifidobacterium longum in the intensive membrane bioreactor. Appl Microbiol Biotechnol 92:939–949

    Article  CAS  Google Scholar 

  151. Song S-H, Kim T-B, Oh H-I, Oh D-K (2003) Optimization of Bifidobacterium longum growth by use of calcium carbonate-alginate beads. World J Microbiol Biotechnol 19:727–731

    Article  CAS  Google Scholar 

  152. Jalili H, Razavi H, Safari M, Amrane A (2010) Kinetic analysis and effect of culture medium and coating materials during free and immobilized cell cultures of Bifidobacterium animalis subsp. lactis Bb 12. Electron J Biotechnol 13:(3)http://www.ejbiotechnology.info/content/vol13/issue3/full/4/(2010)

  153. Jalili H, Balannec B, Razavi H, Amrane A (2011) Unstructured model for free and immobilized cell culture without pH control of Bifidobacterium animalis subsp. lactis Bb 12-inhibitory effect of the undissociated organic acids. Biochem Eng J 58–59:184–188

    Article  CAS  Google Scholar 

  154. Kongo JM, Gomes AM, Malcata FX (2006) Manufacturing of fermented goat milk with a mixed starter culture of Bifidobacterium animalis and Lactobacillus acidophilus in a controlled bioreactor. Lett Appl Microbiol 42:595–599

    CAS  Google Scholar 

  155. Mathys S, Meile L, Lacroix C (2009) Co-cultivation of a bacteriocin-producing mixed culture of Bifidobacterium thermophilum RBL67 and Pediococcus acidilactici UVA1 isolated from baby faeces. J Appl Microbiol 107:36–46

    Article  CAS  Google Scholar 

  156. Goderska K (2012) Different methods of probiotics stabilization. In: Rigobelo EC (ed) Probiotics. InTech, Rijeka. doi:10.5772/50313

    Google Scholar 

  157. Meng XC, Stanton C, Fitzgerald GF, Daly C, Ross RP (2008) Anhydrobiotics: the challenges of drying probiotic cultures. Food Chem 106:1406–1416

    Article  CAS  Google Scholar 

  158. Tymczyszyn EE, Diaz R, Pataro A, Sandonato N, Gomez-Zavaglia A, Disalvo EA (2008) Critical water activity for the preservation of Lactobacillus bulgaricus by vacuum drying. Int J Food Microbiol 128:342–347

    Article  CAS  Google Scholar 

  159. Forest P, Kulozik U, Schmitt M, Bauer S, Santivarangkna C (2012) Storage stability of vacuum-dried probiotic bacterium Lactobacillus paracasei F19. Food Bioprod Process 90:295–300

    Article  CAS  Google Scholar 

  160. Bauer SAW, Schneider S, Behr J, Kulozik U, Foerst P (2012) Combined influence of fermentation and drying conditions on survival and metabolic activity of starter and probiotic cultures after low-temperature vacuum drying. J Biotechnol 159:351–357

    Article  CAS  Google Scholar 

  161. Nag A, Das S (2013) Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. J Func Foods 5:170–177

    Article  CAS  Google Scholar 

  162. To BCS, Etzel MR (1997) Spray drying, freeze drying, or freezing of three different lactic acid bacteria species. J Food Sci 62:576–585

    Article  CAS  Google Scholar 

  163. Saarela M, Virkajärvi I, Alakomi H-L, Mattila-Sandholm T, Vaari A, Suomalainen T, Mättö J (2005) Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifodobacterium animalis ssp. lactis cells produced without milk-based ingredients. J Appl Microbiol 99:1330–1339

    Article  CAS  Google Scholar 

  164. Burns P, Vinderola G, Molinari F, Reinheimer J (2008) Suitability of whey and buttermilk for the growth and frozen storage of probiotic lactobacilli. Int J Dairy Technol 61:156–164

    Article  CAS  Google Scholar 

  165. Celik OF, O’Sullivan JO (2013) Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria. J Dairy Sci 96:3506–3516

    Article  CAS  Google Scholar 

  166. Yang C, Zhu X, Fan D, Mi Y, Luo Y, Hui J, Su R (2012) Optimizing the chemical composition of protective agents for freeze-drying Bifidobacterium longum BIOMA 5920. Chin J Chem Eng 20:930–936

    Article  CAS  Google Scholar 

  167. Modesto M, Mattarelli P, Biavati B (2004) Resistance to freezing and freeze-drying storage processes of potential probiotic bifidobacteria. Ann Microbiol 54:43–48

    Google Scholar 

  168. Bruno FA, Shah NP (2003) Viability of two freeze-dried strains of Bifidobacterium and of commercial preparation at various temperatures during prolonged storage. J Food Sci 68:2336–2339

    Article  CAS  Google Scholar 

  169. Teixeria P, Castro H, Mohacsi-Frakas C, Kirby R (1997) Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J Appl Microbiol 83:219–226

    Article  Google Scholar 

  170. Linders LJM, Kets EPW, de Bont JAM, van’t Riet van K (1998) Combined influence of growth and drying conditions on the activity of dried Lactobacillus plantarum. Biotechnol Prog 14:537–539

    Google Scholar 

  171. Behdoudi-Jobbehdar S, Soukoulis C, Yonekura L, Fisk I (2013) Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Drying Technol 31:1274–1283

    Article  CAS  Google Scholar 

  172. Shokri Z, Fazeli MR, Ardjmand M, Mousavi SM, Gilani K (2015) Factors affecting viability of Bifidobacterium bifidum during spray drying. Daru 23:7

    Article  CAS  Google Scholar 

  173. Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96:1024–1039

    Article  CAS  Google Scholar 

  174. Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925

    Article  CAS  Google Scholar 

  175. Santivarangkna C, Kulozika U, Poerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23:302–315

    Article  CAS  Google Scholar 

  176. Shamekhi F, Shuhaimi M, Ariff A, Manap YA (2013) Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions. Folia Microbiol 58:91–101

    Article  CAS  Google Scholar 

  177. Dianawati D, Shah NP (2011) Survival, acid and bile tolerance, and surface hydrophobicity of microencapsulated B. animalis ssp. lactis Bb12 during storage at room temperature. J Food Sci 76:M592–M599

    Article  CAS  Google Scholar 

  178. Ding WK, Shah NP (2007) Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci 72:M446–M450

    Article  CAS  Google Scholar 

  179. Weinbreck F, Bodnár I, Marco ML (2010) Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int J Food Microbiol 136:364–367

    Article  CAS  Google Scholar 

  180. Pop OL, Brandau T, Vodnar DC, Socaciu C (2012) Study of Bifidobacterium lactis 300b survival during encapsulation, coating and freeze-drying process and the release in alkaline media. Bull Univ Agric Sci Vet Med 69:372–379

    CAS  Google Scholar 

  181. Zhang F, Li XY, Park HJ, Zhao M (2013) Effect of microencapsulation methods on the survival of freeze-dried Bifidobacterium bifidum. J Microencapsul 30:511–518

    Article  CAS  Google Scholar 

  182. Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray drying. Int J Food Biotechnol 74:79–86

    Google Scholar 

  183. Dianawati D, Shah NP (2011) Enzyme stability of microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after freeze-drying and during storage in low water activity at room temperature. J Food Sci 76:M463–M471

    Article  CAS  Google Scholar 

  184. Dianawati D, Mishra V, Shah NP (2012) Role of calcium alginate and mannitol in protecting Bifidobacterium. Appl Env Microbiol 78:6914–6921

    Article  CAS  Google Scholar 

  185. Fávaro-Trindade CS, Grosso CR (2002) Microencapsulation of Lactobacillus acidophilus and Bifobacterium lactis and evaluation of their survival at pH values of the stomach and in bile. J Microencapsul 19:485–494

    Article  CAS  Google Scholar 

  186. Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkahärvi I, Mättö J (2004) Stationary phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J Appl Microbiol 96:1205–1214

    Article  CAS  Google Scholar 

  187. Savijoki K, Suokko A, Palva A, Valmu L, Kalkkinen N, Varmanen P (2005) Effect of heat-shock and bile salts on protein synthesis of Bifodobacterium longum revealed by (35S) methionine labelling and two dimensional gel electrophoresis. FEMS Microbiol Lett 248:207–215

    Article  CAS  Google Scholar 

  188. Ventura M, Canchaya C, Zhang Z, Fitzgerald GF, van Sinderen D (2007) Molecular characterization of hsp20, encoding a small heat shock protein of Bifidobacterium breve UCC2003. Appl Environ Microbiol 73:4695–4703

    Article  CAS  Google Scholar 

  189. Ruiz L, Ruas-Madiedo P, Gueimonde M, de los Reyes-Gavilán CG, Margolles A, Sánchez B (2011) How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr 6:307–318

    Google Scholar 

  190. Nguyen HT, Razafindralambo H, Blecker C, N’Yapo C, Thonart P, Delvigne F (2014) Stochastic exposure to sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium bifidum cell survival to freeze-drying. Biochem Eng J 88:85–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham El Enshasy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El Enshasy, H., Malik, K., Malek, R.A., Othman, N.Z., Elsayed, E.A., Wadaan, M. (2016). Anaerobic Probiotics: The Key Microbes for Human Health. In: Hatti-Kaul, R., Mamo, G., Mattiasson, B. (eds) Anaerobes in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 156. Springer, Cham. https://doi.org/10.1007/10_2015_5008

Download citation

Publish with us

Policies and ethics