Skip to main content

Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols

  • Chapter
  • First Online:
Bioreactor Engineering Research and Industrial Applications I

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 155))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vickers C, Klein-Marcuschamer D, Krömer J (2012) Examining the feasibility of bulk commodity production in Escherichia coli. Biotechnol Lett 34:585–596

    Article  CAS  Google Scholar 

  2. Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  Google Scholar 

  3. Chen X, Zhou L, Tian K et al (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223

    Article  CAS  Google Scholar 

  4. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358

    Article  CAS  Google Scholar 

  5. Taher H, Al-Zuhair S, Al-Marzouqi AH et al (2011) A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. Enzyme Res 2011:468292

    Article  CAS  Google Scholar 

  6. U.S. Department of Energy EIA (2012) Petroleum marketing monthly. Department of Energy, Washington, DC, DOE Publ. No. EIA-0380(20012/02)

    Google Scholar 

  7. U.S. Department of Energy EIA (2006) Annual energy outlook 2006 with projections to 2030. Department of Energy, DOE Publ. No. EIA-0383(2006), Washington, DC

    Google Scholar 

  8. U.S. Department of Energy EIA (2007) Annual energy outlook 2007 with projections to 2030. Departmentt of Energy, DOE/EIA-0383(2007), Washington, DC

    Google Scholar 

  9. Lee JW, Na D, Park JM et al (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546

    Article  CAS  Google Scholar 

  10. Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. 86. Appl Energy 86(1):S108–S117

    Article  CAS  Google Scholar 

  11. Jang YS, Kim B, Shin JH et al (2012) Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109:2437–2459

    Article  CAS  Google Scholar 

  12. Yim H, Haselbeck R, Niu W et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  Google Scholar 

  13. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  Google Scholar 

  14. Jambunathan P, Zhang K (2014) Novel pathways and products from 2-keto acids. Curr Opin Biotechnol 29:1–7

    Article  CAS  Google Scholar 

  15. Schiweck H, Bär A, Vogel R et al (2000) Sugar Alcohols, in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  16. Shin JH, Kim HU, Kim DI et al (2013) Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv 31:925–935

    Article  CAS  Google Scholar 

  17. Jarboe LR, Liu P, Kautharapu KB et al (2012) Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals. Comput Struct Biotechnol J 3:e201210005

    Article  Google Scholar 

  18. Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1:514–525

    Article  CAS  Google Scholar 

  19. Nielsen J, Fussenegger M, Keasling J et al (2014) Engineering synergy in biotechnology. Nat Chem Biol 10:319–322

    Article  CAS  Google Scholar 

  20. Schirmer A, Rude MA, Li X et al (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  Google Scholar 

  21. Yu C, Cao Y, Zou H et al (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583

    Article  CAS  Google Scholar 

  22. Zhou L, Tian KM, Niu DD et al (2012) Improvement of D-lactate productivity in recombinant Escherichia coli by coupling production with growth. Biotechnol Lett 34:1123–1130

    Article  CAS  Google Scholar 

  23. Zhou L, Niu DD, Tian KM et al (2012) Genetically switched D-lactate production in Escherichia coli. Metab Eng 14:560–568

    Article  CAS  Google Scholar 

  24. Utrilla J, Licona-Cassani C, Marcellin E et al (2012) Engineering and adaptive evolution of Escherichia coli for D-lactate fermentation reveals GatC as a xylose transporter. Metab Eng 14:469–476

    Article  CAS  Google Scholar 

  25. Zhou L, Zuo ZR, Chen XZ et al (2011) Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Curr Microbiol 62:981–989

    Article  CAS  Google Scholar 

  26. Yang J, Wang Z, Zhu N et al (2014) Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Microbiol Res 169:432–440

    Article  CAS  Google Scholar 

  27. Jiang M, Chen X, Liang L et al (2014) Co-expression of phosphoenolpyruvate carboxykinase and nicotinic acid phosphoribosyltransferase for succinate production in engineered Escherichia coli. Enzyme Microb Technol 56:8–14

    Article  CAS  Google Scholar 

  28. Tang J, Zhu X, Lu J et al (2013) Recruiting alternative glucose utilization pathways for improving succinate production. Appl Microbiol Biotechnol 97:2513–2520

    Article  CAS  Google Scholar 

  29. Tan Z, Zhu X, Chen J et al (2013) Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. Appl Environ Microbiol 79:4838–4844

    Article  CAS  Google Scholar 

  30. Kim K, Kim SK, Park YC et al (2014) Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 156:170–175

    Article  CAS  Google Scholar 

  31. Jung WS, Kang JH, Chu HS et al (2014) Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metab Eng 23:116–122

    Article  CAS  Google Scholar 

  32. Kwak S, Park YC, Seo JH (2013) Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH. Bioresour Technol 135:432–439

    Article  CAS  Google Scholar 

  33. Rathnasingh C, Raj SM, Lee Y et al (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157:633–640

    Article  CAS  Google Scholar 

  34. Desai SH, Rabinovitch-Deere CA, Tashiro Y et al (2014) Isobutanol production from cellobiose in Escherichia coli. Appl Microbiol Biotechnol 98:3727–3736

    Article  CAS  Google Scholar 

  35. Shi A, Zhu X, Lu J et al (2013) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10

    Article  CAS  Google Scholar 

  36. Trinh CT, Li J, Blanch HW et al (2011) Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl Environ Microbiol 77:4894–4904

    Article  CAS  Google Scholar 

  37. Hwang HJ, Park JH, Kim JH et al (2014) Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli. Biotechnol Bioeng 111:1374–1384

    Article  CAS  Google Scholar 

  38. Wang W, Lu X (2013) Microbial synthesis of alka(e)nes. Front Bioeng Biotechnol. doi: 10.3389/fbioe.2013.00010

  39. Howard TP, Middelhaufe S, Moore K et al (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 110:7636–7641

    Article  CAS  Google Scholar 

  40. Riemer SA, Rex R, Schomburg D (2013) A metabolite-centric view on flux distributions in genome-scale metabolic models. BMC Syst Biol 7:33

    Article  Google Scholar 

  41. McCloskey D, Palsson BO, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9:661

    Article  CAS  Google Scholar 

  42. Xu Z, Sun X, Sun J (2013) Construction and analysis of the model of energy metabolism in E. coli. PLoS One 8:e55137

    Article  CAS  Google Scholar 

  43. Khodayari A, Zomorrodi AR, Liao JC et al (2014) A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng. doi:10.1016/j.ymben.2014.05.014

    Google Scholar 

  44. Zomorrodi AR, Lafontaine Rivera JG, Liao JC et al (2013) Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. Biotechnol J 8:1090–1104

    Article  CAS  Google Scholar 

  45. Xu Z, Zheng P, Sun J et al (2013) ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network. PLoS One 8:e72150

    Article  CAS  Google Scholar 

  46. Chang RL, Andrews K, Kim D et al (2013) Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 340:1220–1223

    Article  CAS  Google Scholar 

  47. Durot M, Bourguignon P-Y, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190

    Article  CAS  Google Scholar 

  48. O’Brien EJ, Lerman JA, Chang RL et al (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9:693

    Google Scholar 

  49. Cho BK, Kim D, Knight EM et al (2014) Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC Biol 12:4

    Article  CAS  Google Scholar 

  50. Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419

    Article  CAS  Google Scholar 

  51. Marcheschi RJ, Li H, Zhang K et al (2012) A synthetic recursive “+1” pathway for carbon chain elongation. ACS Chem Biol 7:689–697

    Article  CAS  Google Scholar 

  52. Planson AG, Carbonell P, Grigoras I et al (2012) A retrosynthetic biology approach to therapeutics: from conception to delivery. Curr Opin Biotechnol 23:948–956

    Article  CAS  Google Scholar 

  53. Rodrigo G, Carrera J, Prather KJ et al (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24:2554–2556

    Article  CAS  Google Scholar 

  54. Hatzimanikatis V, Li C, Ionita JA et al (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609

    Article  CAS  Google Scholar 

  55. Cho A, Yun H, Park JH et al (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35

    Article  CAS  Google Scholar 

  56. Mavrovouniotis M, Stephanopoulos G (1992) Synthesis of biochemical production routes. Comput Chem Eng 16:605–619

    Article  CAS  Google Scholar 

  57. Tian J, Gong H, Sheng N et al (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432:1050–1054

    Article  CAS  Google Scholar 

  58. Quan J, Saaem I, Tang N et al (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29:449–452

    Article  CAS  Google Scholar 

  59. Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5

    Article  CAS  Google Scholar 

  60. Xu P, Vansiri A, Bhan N et al (2012) ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth Biol 1:256–266

    Article  CAS  Google Scholar 

  61. Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118

    Article  CAS  Google Scholar 

  62. Hillson N (2011) DNA Assembly method standardization for synthetic biomolecular circuits and systems. In: Koeppl H, Setti G, di Bernardo M et al (eds) Design and analysis of biomolecular circuits. Springer, New York, pp 295–314

    Google Scholar 

  63. Quan J, Tian J (2014) Circular polymerase extension cloning. Methods Mol Biol 1116:103–117

    Article  CAS  Google Scholar 

  64. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  CAS  Google Scholar 

  65. Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  66. Shao Z, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    Article  CAS  Google Scholar 

  67. Du J, Yuan Y, Si T et al (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40:e142

    Article  CAS  Google Scholar 

  68. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  Google Scholar 

  69. Jarboe LR, Zhang X, Wang X et al (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010:761042

    Article  CAS  Google Scholar 

  70. Gaj T, Sirk SJ, Barbas CF (2014) Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng 111:1–15

    Article  CAS  Google Scholar 

  71. Posfai G, Koob MD, Kirkpatrick HA et al (1997) Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179:4426–4428

    CAS  Google Scholar 

  72. Jantama K, Zhang X, Moore JC et al (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101:881–893

    Article  CAS  Google Scholar 

  73. Zhang X, Jantama K, Moore JC et al (2007) Production of L -alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366

    Article  CAS  Google Scholar 

  74. Gay P, Le Coq D, Steinmetz M et al (1985) Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164:918–921

    CAS  Google Scholar 

  75. Hammer K, Mijakovic I, Jensen PR (2006) Synthetic promoter libraries–tuning of gene expression. Trends Biotechnol 24:53–55

    Article  CAS  Google Scholar 

  76. Nevoigt E, Kohnke J, Fischer CR et al (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72:5266–5273

    Article  CAS  Google Scholar 

  77. Alper H, Fischer C, Nevoigt E et al (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102:12678–12683

    Article  CAS  Google Scholar 

  78. Solem C, Jensen PR (2002) Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403

    Article  CAS  Google Scholar 

  79. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87

    CAS  Google Scholar 

  80. Jensen PR, Hammer K (1998) Artificial promoters for metabolic optimization. Biotechnol Bioeng 58:191–195

    Article  CAS  Google Scholar 

  81. de la Cueva-Mendez G, Pimentel B (2007) Gene and cell survival: lessons from prokaryotic plasmid R1. EMBO Rep 8:458–464

    Article  CAS  Google Scholar 

  82. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  CAS  Google Scholar 

  83. Lu J, Tang J, Liu Y et al (2012) Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 93:2455–2462

    Article  CAS  Google Scholar 

  84. De Mey M, Maertens J, Boogmans S et al (2010) Promoter knock-in: a novel rational method for the fine tuning of genes. BMC Biotechnol 10:26

    Article  CAS  Google Scholar 

  85. Meynial-Salles I, Cervin MA, Soucaille P (2005) New tool for metabolic pathway engineering in Escherichia coli: one-step method to modulate expression of chromosomal genes. Appl Environ Microbiol 71:2140–2144

    Article  CAS  Google Scholar 

  86. Millard CS, Chao YP, Liao JC et al (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol 62:1808–1810

    CAS  Google Scholar 

  87. Santos CN, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176

    Article  CAS  Google Scholar 

  88. Pfleger BF, Pitera DJ, Smolke CD et al (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032

    Article  CAS  Google Scholar 

  89. Dueber JE, Wu GC, Malmirchegini GR et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    Article  CAS  Google Scholar 

  90. Cobb RE, Sun N, Zhao H (2013) Directed evolution as a powerful synthetic biology tool. Methods 60:81–90

    Article  CAS  Google Scholar 

  91. Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  CAS  Google Scholar 

  92. Yoo SM, Na D, Lee SY (2013) Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat Protoc 8:1694–1707

    Article  CAS  Google Scholar 

  93. Xu P, Wang W, Li L et al (2014) Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol 9:451–458

    Article  CAS  Google Scholar 

  94. Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533–537

    Article  CAS  Google Scholar 

  95. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    Article  CAS  Google Scholar 

  96. Cobb RE, Si T, Zhao H (2012) Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol 16:285–291

    Article  CAS  Google Scholar 

  97. Zhou S, Yomano LP, Shanmugam KT et al (2005) Fermentation of 10 % (w/v) sugar to D: (-)-lactate by engineered Escherichia coli B. Biotechnol Lett 27:1891–1896

    Article  CAS  Google Scholar 

  98. Zhou S, Shanmugam KT, Yomano LP et al (2006) Fermentation of 12 % (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett 28:663–670

    Article  CAS  Google Scholar 

  99. Grabar TB, Zhou S, Shanmugam KT et al (2006) Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(-)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535

    Article  CAS  Google Scholar 

  100. Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76:2397–2401

    Article  CAS  Google Scholar 

  101. Zhang X, Jantama K, Moore JC et al (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA 106:20180–20185

    Article  CAS  Google Scholar 

  102. Jiang M, Wan Q, Liu R et al (2014) Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies. J Ind Microbiol Biotechnol 41:115–123

    Article  CAS  Google Scholar 

  103. Trinh CT, Srienc F (2009) Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl Environ Microbiol 75:6696–6705

    Article  CAS  Google Scholar 

  104. Fernandez-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B et al (2012) Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 96:1291–1300

    Article  CAS  Google Scholar 

  105. Zheng H, Wang X, Yomano LP et al (2013) Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions. Appl Environ Microbiol 79:3202–3208

    Article  CAS  Google Scholar 

  106. Liu H, Yan M, Lai C et al (2010) gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:574–582

    Article  CAS  Google Scholar 

  107. Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–137

    Article  CAS  Google Scholar 

  108. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  CAS  Google Scholar 

  109. Alper H, Moxley J, Nevoigt E et al (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  Google Scholar 

  110. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  CAS  Google Scholar 

  111. Otte B, Grunwaldt E, Mahmoud O et al (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Environ Microbiol 75:7610–7616

    Article  CAS  Google Scholar 

  112. Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393

    Article  CAS  Google Scholar 

  113. Zhang YX, Perry K, Vinci VA et al (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  CAS  Google Scholar 

  114. Warner JR, Reeder PJ, Karimpour-Fard A et al (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–862

    Article  CAS  Google Scholar 

  115. Royce LA, Boggess E, Fu Y et al (2014) Transcriptomic analysis of carboxylic acid challenge in Escherichia coli: beyond membrane damage. PLoS One 9:e89580

    Article  CAS  Google Scholar 

  116. McCloskey D, Gangoiti JA, King ZA et al (2014) A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng 111:803–815

    Article  CAS  Google Scholar 

  117. Wiback SJ, Mahadevan R, Palsson BO (2004) Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol Bioeng 86:317–331

    Article  CAS  Google Scholar 

  118. Oliver DJ, Nikolau B, Wurtele ES (2002) Functional genomics: high-throughput mRNA, protein, and metabolite analyses. Metab Eng 4:98–106

    Article  CAS  Google Scholar 

  119. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323

    Article  CAS  Google Scholar 

  120. Alonso S, Rendueles M, Diaz M (2014) Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol . doi:10.3109/07388551.2014.904269

    Google Scholar 

  121. Tsao GT, Cao NJ, Du J et al (1999) Production of multifunctional organic acids from renewable resources. In: Tsao GT, Brainard AP, Bungay HR et al (eds) Recent progress in bioconversion of Lignocellulosics. Springer, Berlin, pp 243–280

    Google Scholar 

  122. Zhou S, Causey TB, Hasona A et al (2003) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407

    Article  CAS  Google Scholar 

  123. Shukla VB, Zhou S, Yomano LP et al (2004) Production of D(-)-lactate from sucrose and molasses. Biotechnol Lett 26:689–693

    Article  CAS  Google Scholar 

  124. Wang Q, Yang P, Liu C et al (2013) Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli. Bioresour Technol 131:548–551

    Article  CAS  Google Scholar 

  125. Meng DC, Shi ZY, Wu LP et al (2012) Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab Eng 14:317–324

    Article  CAS  Google Scholar 

  126. Werpy T GPe (2004) Top value added chemicals from biomass. U.S. Department of Energy, Washington, DC. http://www1.eere.energy.gov/biomass/pdfs/35523.pdf

  127. Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 151:252–256

    Article  CAS  Google Scholar 

  128. Strauss G, Eisenreich W, Bacher A et al (1992) 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus. Eur J Biochem 205:853–866

    Article  CAS  Google Scholar 

  129. Hugler M, Huber H, Stetter KO et al (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173

    Google Scholar 

  130. Berg IA, Kockelkorn D, Buckel W et al (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786

    Article  CAS  Google Scholar 

  131. Ansede JH, Pellechia PJ, Yoch DC (1999) Metabolism of acrylate to beta-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl Environ Microbiol 65:5075–5081

    CAS  Google Scholar 

  132. Loh KD, Gyaneshwar P, Papadimitriou EM et al (2006) A previously undescribed pathway for pyrimidine catabolism. Proc Natl Acad Sci U S A 103:5114–5119

    Article  CAS  Google Scholar 

  133. Kim KS, Pelton JG, Inwood WB et al (2010) The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J Bacteriol 192:4089–4102

    Article  CAS  Google Scholar 

  134. Andersen G, Bjornberg O, Polakova S et al (2008) A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes. J Mol Biol 380:656–666

    Article  CAS  Google Scholar 

  135. Valdehuesa KN, Liu H, Nisola GM et al (2013) Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 97:3309–3321

    Article  CAS  Google Scholar 

  136. Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31:945–961

    Article  CAS  Google Scholar 

  137. Jiang X, Meng X, Xian M (2009) Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biotechnol 82:995–1003

    Article  CAS  Google Scholar 

  138. Raj S, Rathnasingh C, Jo J-E et al (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43:1440–1446

    Article  CAS  Google Scholar 

  139. Mohan Raj S, Rathnasingh C, Jung WC et al (2009) Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli. Appl Microbiol Biotechnol 84:649–657

    Article  CAS  Google Scholar 

  140. Rathnasingh C, Raj SM, Jo JE et al (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 104:729–739

    CAS  Google Scholar 

  141. Tokuyama K, Ohno S, Yoshikawa K et al (2014) Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb Cell Fact 13:64

    Article  CAS  Google Scholar 

  142. Bunch PK, Mat-Jan F, Lee N et al (1997) The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143(Pt 1):187–195

    Article  CAS  Google Scholar 

  143. Chatterjee R, Millard CS, Champion K et al (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154

    Article  CAS  Google Scholar 

  144. Donnelly MI, Millard CS, Clark DP et al (1998) A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol. Appl Biochem Biotechnol 70–72:187–198

    Article  Google Scholar 

  145. Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63:2695–2701

    CAS  Google Scholar 

  146. Escalante A, Cervantes AS, Gosset G et al (2012) Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol 94:1483–1494

    Article  CAS  Google Scholar 

  147. Gabor E, Gohler AK, Kosfeld A et al (2011) The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur J Cell Biol 90:711–720

    Article  CAS  Google Scholar 

  148. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    CAS  Google Scholar 

  149. Vemuri GN, Eiteman MA, Altman E (2002) Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28:325–332

    Article  CAS  Google Scholar 

  150. Sanchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239

    Article  CAS  Google Scholar 

  151. Cheng KK, Wang GY, Zeng J et al (2013) Improved succinate production by metabolic engineering. Biomed Res Int 2013:538790

    Google Scholar 

  152. Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5:223–234

    CAS  Google Scholar 

  153. Shanmugam KT, Ingram LO (2008) Engineering biocatalysts for production of commodity chemicals. J Mol Microbiol Biotechnol 15:8–15

    Article  CAS  Google Scholar 

  154. Maloy SR, Nunn WD (1982) Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol 149:173–180

    CAS  Google Scholar 

  155. Lorca GL, Ezersky A, Lunin VV et al (2007) Glyoxylate and pyruvate are antagonistic effectors of the Escherichia coli IclR transcriptional regulator. J Biol Chem 282:16476–16491

    Article  CAS  Google Scholar 

  156. Yamamoto K, Ishihama A (2003) Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47:183–194

    Article  CAS  Google Scholar 

  157. Cozzone AJ, El-Mansi M (2005) Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 9:132–146

    Article  CAS  Google Scholar 

  158. Balzer GJ, Thakker C, Bennett GN et al (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metab Eng 20:1–8

    Article  CAS  Google Scholar 

  159. Stols L, Kulkarni G, Harris BG et al (1997) Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose. Appl Biochem Biotechnol 63–65:153–158

    Article  Google Scholar 

  160. Jantama K, Haupt MJ, Svoronos SA et al (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153

    Article  CAS  Google Scholar 

  161. Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 4:14

    Article  CAS  Google Scholar 

  162. Zhang X, Jantama K, Shanmugam KT et al (2009) Reengineering Escherichia coli for Succinate Production in Mineral Salts Medium. Appl Environ Microbiol 75:7807–7813

    Article  CAS  Google Scholar 

  163. Zhu X, Tan Z, Xu H et al (2014) Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng 24:87–96

    Google Scholar 

  164. Steiert PS, Stauffer LT, Stauffer GV (1990) The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system. J Bacteriol 172:6142–6144

    CAS  Google Scholar 

  165. Guest JR, Creaghan IT (1974) Further studies with lipoamide dehydrogenase mutants of Escherichia coli K12. J Gen Microbiol 81:237–245

    Article  CAS  Google Scholar 

  166. Guest JR, Creaghan IT (1972) Lipoamide dehydrogenase mutants of Escherichia coli K 12. Biochem J 130:8

    Article  Google Scholar 

  167. Kim YM, Cho HS, Jung GY et al (2011) Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 108:2941–2946

    Article  CAS  Google Scholar 

  168. Sauer U, Canonaco F, Heri S et al (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619

    Article  CAS  Google Scholar 

  169. Sauer U, Lasko DR, Fiaux J et al (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688

    CAS  Google Scholar 

  170. Battat E, Peleg Y, Bercovitz A et al (1991) Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng 37:1108–1116

    Article  CAS  Google Scholar 

  171. Peleg Y, Rokem JS, Goldberg I (1990) A simple plate-assay for the screening of L-malic acid producing microorganisms. FEMS Microbiol Lett 55:233–236

    CAS  Google Scholar 

  172. Pines O, Even-Ram S, Elnathan N et al (1996) The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase. Appl Microbiol Biotechnol 46:393–399

    CAS  Google Scholar 

  173. Taing O, Taing K (2007) Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur Food Res Technol 224:343–347

    Article  CAS  Google Scholar 

  174. Kawagoe M, Hyakumura K, Suye S-I et al (1997) Application of bubble column fermentors to submerged culture of Schizophyllum commune for production of L-malic acid. J Ferment Bioeng 84:333–336

    Article  CAS  Google Scholar 

  175. Zhang X, Wang X, Shanmugam KT et al (2011) L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77:427–434

    Article  CAS  Google Scholar 

  176. Straathof AJ, van Gulik WM (2012) Production of fumaric Acid by fermentation. Subcell Biochem 64:225–240

    Article  CAS  Google Scholar 

  177. Ehrlich F (1911) Über die bildung von fumarsäure durch schimmelpilze. Ber Dtsch Chem Ges 44:3737–3742

    Article  Google Scholar 

  178. Wang G, Huang D, Qi H et al (2013) Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresour Technol 137:1–8

    Article  CAS  Google Scholar 

  179. Zhou Y, Nie K, Zhang X et al (2014) Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus. Bioresour Technol 163:48–53

    Article  CAS  Google Scholar 

  180. Gu S, Xu Q, Huang H et al (2014) Alternative respiration and fumaric acid production of Rhizopus oryzae. Appl Microbiol Biotechnol 98:5145–5152

    Article  CAS  Google Scholar 

  181. Goldberg I, Steiglitz B (1985) Improved rate of fumaric acid production by Tweens and vegetable oils in rhizopus arrhizus. Biotechnol Bioeng 27:1067–1069

    Article  CAS  Google Scholar 

  182. Zhou Y, Du J, Tsao GT (2002) Comparison of fumaric acid production by Rhizopus oryzae using different neutralizing agents. Bioprocess Biosyst Eng 25:179–181

    Article  CAS  Google Scholar 

  183. Fu YQ, Li S, Chen Y et al (2010) Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy. Appl Biochem Biotechnol 162:1031–1038

    Article  CAS  Google Scholar 

  184. Xu Q, Li S, Fu Y et al (2010) Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour Technol 101:6262–6264

    Article  CAS  Google Scholar 

  185. Ding Y, Li S, Dou C et al (2011) Production of fumaric acid by Rhizopus oryzae: role of carbon-nitrogen ratio. Appl Biochem Biotechnol 164:1461–1467

    Article  CAS  Google Scholar 

  186. Roa Engel CA, van Gulik WM, Marang L et al (2011) Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme Microb Technol 48:39–47

    Article  CAS  Google Scholar 

  187. Zhang B, Skory CD, Yang ST (2012) Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metab Eng 14:512–520

    Article  CAS  Google Scholar 

  188. Gu C, Zhou Y, Liu L et al (2013) Production of fumaric acid by immobilized Rhizopus arrhizus on net. Bioresour Technol 131:303–307

    Article  CAS  Google Scholar 

  189. Ling LB, Ng TK (1989). US Patent 4,877,731. Google Patents

    Google Scholar 

  190. Song CW, Kim DI, Choi S et al (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110:2025–2034

    Article  CAS  Google Scholar 

  191. Singh J, Gupta KP (2003) Calcium glucarate prevents tumor formation in mouse skin. Biomed Environ Sci 16:9–16

    Google Scholar 

  192. Singh J, Gupta KP (2007) Induction of apoptosis by calcium D-glucarate in 7,12-dimethyl benz [a] anthracene-exposed mouse skin. J Environ Pathol Toxicol Oncol 26:63–73

    Article  CAS  Google Scholar 

  193. Walaszek Z, Szemraj J, Hanausek M et al (1996) d-Glucaric acid content of various fruits and vegetables and cholesterol-lowering effects of dietary d-glucarate in the rat. Nutr Res 16:673–681

    Article  CAS  Google Scholar 

  194. Moon TS, Yoon SH, Lanza AM et al (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75:589–595

    Article  CAS  Google Scholar 

  195. Moon TS, Dueber JE, Shiue E et al (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305

    Article  CAS  Google Scholar 

  196. Shiue E, Prather KL (2014) Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport. Metab Eng 22:22–31

    Article  CAS  Google Scholar 

  197. Xie NZ, Liang H, Huang RB et al (2014) Biotechnological production of muconic acid: current status and future prospects. Biotechnol Adv 32:615–622

    Article  CAS  Google Scholar 

  198. Lin Y, Sun X, Yuan Q et al (2014) Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab Eng 23:62–69

    Article  CAS  Google Scholar 

  199. Sun X, Lin Y, Huang Q et al (2013) A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl Environ Microbiol 79:4024–4030

    Article  CAS  Google Scholar 

  200. Draths KM, Frost JW (1994) Environmentally Compatible Synthesis of Adipic Acid from D-Glucose. J Am Chem Soc 116:399–400

    Article  CAS  Google Scholar 

  201. Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201–211

    Article  CAS  Google Scholar 

  202. Bui V, Lau MK, MacRae D et al (2013) Methods for producing isomers of muconic acid and muconate salts, United States Patent application. US 2013/0030215 A1, Google Patents

    Google Scholar 

  203. Polen T, Spelberg M, Bott M (2013) Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 167:75–84

    Article  CAS  Google Scholar 

  204. Musser MT (2000) Adipic Acid, in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  205. Yu JL, Xia XX, Zhong JJ et al (2014) Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol Bioeng. doi:10.1002/bit.25293

    Google Scholar 

  206. Han L, Chen W, Yuan F et al (2013) Biosynthesis of adipic acid. Sheng Wu Gong Cheng Xue Bao 29:1374–1385

    CAS  Google Scholar 

  207. Picataggio S, Beardslee T (2012) Biological methods for preparing adipic acid. Google Patents US 8,241,879 B2

    Google Scholar 

  208. Parthasarathy A, Pierik AJ, Kahnt J et al (2011) Substrate specificity of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum: toward a bio-based production of adipic acid. Biochemistry 50:3540–3550

    Article  CAS  Google Scholar 

  209. Noack H, Georgiev V, Blomberg MR et al (2011) Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid. Inorg Chem 50:1194–1202

    Article  CAS  Google Scholar 

  210. Burgard AP, Pharkya P, Osterhout RE (2010) Microorganisms for the production of adipic acid and other compounds. Google Patents US 2010/0330626 A1

    Google Scholar 

  211. Dugal M, Sankar G, Raja R et al (2000) Designing a Heterogeneous Catalyst for the Production of Adipic Acid by Aerial Oxidation of Cyclohexane. Angew Chem Int Ed Engl 39:2310–2313

    Article  CAS  Google Scholar 

  212. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  Google Scholar 

  213. Jain R, Yan Y (2011) Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb Cell Fact 10:97

    Article  CAS  Google Scholar 

  214. Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65:1180–1185

    CAS  Google Scholar 

  215. Altaras NE, Cameron DC (2000) Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 16:940–946

    Article  CAS  Google Scholar 

  216. Soma Y, Inokuma K, Tanaka T et al (2012) Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng 114:80–85

    Article  CAS  Google Scholar 

  217. Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    Article  CAS  Google Scholar 

  218. Zhang K, Sawaya MR, Eisenberg DS et al (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105:20653–20658

    Article  CAS  Google Scholar 

  219. Dhande YK, Xiong M, Zhang K (2012) Production of C5 carboxylic acids in engineered Escherichia coli. Process Biochem 47:1965–1971

    Article  CAS  Google Scholar 

  220. Bhan N, Xu P, Koffas MA (2013) Pathway and protein engineering approaches to produce novel and commodity small molecules. Curr Opin Biotechnol 24:1137–1143

    Article  CAS  Google Scholar 

  221. Baez A, Cho KM, Liao JC (2011) High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 90:1681–1690

    Article  CAS  Google Scholar 

  222. Bastian S, Liu X, Meyerowitz JT et al (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13:345–352

    Article  CAS  Google Scholar 

  223. Machado HB, Dekishima Y, Luo H et al (2012) A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab Eng 14:504–511

    Article  CAS  Google Scholar 

  224. Tseng HC, Prather KL (2012) Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proc Natl Acad Sci USA 109:17925–17930

    Article  CAS  Google Scholar 

  225. Yu P, Tai Y-S, Woodruff AP et al (2012) Engineering artificial metabolic pathways for biosynthesis. Curr Opin Chem Eng 1:373–379

    Article  Google Scholar 

  226. Pitera DJ, Paddon CJ, Newman JD et al (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  CAS  Google Scholar 

  227. Chowdhury R, Sahu G, Das J (1996) Stress response in pathogenic bacteria. J Bioscience 21:149–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Tianjin Key Technology R&D program of Tianjin Municipal Science and Technology Commission (11ZCZDSY09100, 13ZCZDSY05300), the National Natural Science Foundation of China (31370136), and the Key Deployment Project of the Chinese Academy of Sciences (KGZD-EW-606; KSZD-EW-Z-016-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, P., Zhu, X., Tan, Z., Zhang, X., Ma, Y. (2015). Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. In: Ye, Q., Bao, J., Zhong, JJ. (eds) Bioreactor Engineering Research and Industrial Applications I. Advances in Biochemical Engineering/Biotechnology, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2014_294

Download citation

Publish with us

Policies and ethics