Skip to main content

Engineered Cell–Cell Communication and Its Applications

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 146))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251

    Article  CAS  Google Scholar 

  2. Ispolatov I, Ackermann M, Doebeli M (2012) Division of labour and the evolution of multicellularity. Proc Biol Sci 279(1734):1768–1776

    Article  Google Scholar 

  3. LeRoith D, Shemer J, Roberts CT Jr (1992) Evolutionary origins of intercellular communication systems: implications for mammalian biology. Horm Res 38(2):1–6

    Article  Google Scholar 

  4. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86(5):1267–1279

    Article  CAS  Google Scholar 

  5. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  CAS  Google Scholar 

  6. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  CAS  Google Scholar 

  7. Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Natl Acad Sci U S A 99(26):16587–16591

    Article  CAS  Google Scholar 

  8. Guet CC et al (2002) Combinatorial synthesis of genetic networks. Science 296(5572):1466–1470

    Article  CAS  Google Scholar 

  9. Chuang JS (2012) Engineering multicellular traits in synthetic microbial populations. Curr Opin Chem Biol 16:370–378

    Google Scholar 

  10. Pai A et al (2009) Engineering multicellular systems by cell–cell communication. Curr Opin Biotechnol 20(4):461–470

    Article  CAS  Google Scholar 

  11. Xavier JB (2011) Social interaction in synthetic and natural microbial communities. Mol Syst Biol 7:483

    Article  Google Scholar 

  12. Tsao C-Y, Quan DN, Bentley WE (2012) Development of the quorum sensing biotechnological toolbox. Curr Opin Chem Eng 1(4):396–402

    Article  Google Scholar 

  13. Shong J, Jimenez Diaz MR, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 2:1–5

    Google Scholar 

  14. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  Google Scholar 

  15. Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97(16):8789–8793

    Article  CAS  Google Scholar 

  16. Schaefer AL et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454(7204):595–599

    Article  CAS  Google Scholar 

  17. Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19(6):550–555

    Article  CAS  Google Scholar 

  18. Balagadde FK et al (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 4:187

    Article  Google Scholar 

  19. Song H et al (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5(12):929–935

    Article  CAS  Google Scholar 

  20. Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104(6):1877–1882

    Article  CAS  Google Scholar 

  21. Hu B et al (2010) An environment-sensitive synthetic microbial ecosystem. PLoS One 5(5):e10619

    Article  Google Scholar 

  22. Kim HJ et al (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci U S A 105(47):18188–18193

    Article  CAS  Google Scholar 

  23. Brenner K, Arnold FH (2011) Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS One 6(2):e16791

    Article  CAS  Google Scholar 

  24. Chuang JS, Rivoire O, Leibler S (2009) Simpson’s paradox in a synthetic microbial system. Science 323(5911):272–275

    Article  CAS  Google Scholar 

  25. Pai A, Tanouchi Y, You L (2012) Optimality and robustness in quorum sensing (QS)-mediated regulation of a costly public good enzyme. Proc Natl Acad Sci U S A 109(48):19810–19815

    Article  CAS  Google Scholar 

  26. Pai A, You L (2009) Optimal tuning of bacterial sensing potential. Mol Syst Biol 5:286

    Article  Google Scholar 

  27. Sekine R et al (2011) Tunable synthetic phenotypic diversification on Waddington’s landscape through autonomous signaling. Proc Natl Acad Sci U S A 108(44):17969–17973

    Article  CAS  Google Scholar 

  28. Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26(3):399–415

    Article  CAS  Google Scholar 

  29. Goldbeter A (2006) Oscillations and waves of cyclic AMP in Dictyostelium: a prototype for spatio-temporal organization and pulsatile intercellular communication. Bull Math Biol 68(5):1095–1109

    Article  CAS  Google Scholar 

  30. Harris MP et al (2005) Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proc Natl Acad Sci U S A 102(33):11734–11739

    Article  CAS  Google Scholar 

  31. Chou CS et al (2010) Spatial dynamics of multistage cell lineages in tissue stratification. Biophys J 99(10):3145–3154

    Article  CAS  Google Scholar 

  32. Greco V et al (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4(2):155–169

    Article  CAS  Google Scholar 

  33. Basu S et al (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134

    Article  CAS  Google Scholar 

  34. Matsuda M et al (2012) Synthetic signal propagation through direct cell–cell interaction. Sci Signal 5(220):ra31

    Google Scholar 

  35. Turing AM (1990) The chemical basis of morphogenesis. 1953. Bull Math Biol 52(1–2):153–197 (discussion 119–152)

    Google Scholar 

  36. Liu C et al (2011) Sequential establishment of stripe patterns in an expanding cell population. Science 334(6053):238–241

    Article  CAS  Google Scholar 

  37. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2):193–203

    Article  CAS  Google Scholar 

  38. Xu T et al (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Article  Google Scholar 

  39. Roth EA et al (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25(17):3707–3715

    Article  CAS  Google Scholar 

  40. Choi WS et al (2011) Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials 32(10):2500–2507

    Article  CAS  Google Scholar 

  41. Tabor JJ et al (2009) A synthetic genetic edge detection program. Cell 137(7):1272–1281

    Article  Google Scholar 

  42. Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469(7329):212–215

    Article  CAS  Google Scholar 

  43. Regot S et al (2011) Distributed biological computation with multicellular engineered networks. Nature 469(7329):207–211

    Article  CAS  Google Scholar 

  44. Moon TS et al (2012) Genetic programs constructed from layered logic gates in single cells. Nature 491(7423):249–253

    Article  CAS  Google Scholar 

  45. Brenner K et al (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci U S A 104(44):17300–17304

    Article  CAS  Google Scholar 

  46. Levskaya A et al (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438(7067):441–442

    Article  CAS  Google Scholar 

  47. You L et al (2004) Programmed population control by cell–cell communication and regulated killing. Nature 428(6985):868–871

    Article  CAS  Google Scholar 

  48. Balagadde FK et al (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731):137–140

    Article  CAS  Google Scholar 

  49. Anderson JC et al (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355(4):619–627

    Article  CAS  Google Scholar 

  50. Xie Z et al (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333(6047):1307–1311

    Article  CAS  Google Scholar 

  51. Danino T et al (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330

    Article  CAS  Google Scholar 

  52. Prindle A et al (2012) A sensing array of radically coupled genetic ‘biopixels’. Nature 481(7379):39–44

    Article  CAS  Google Scholar 

  53. Smyth AR et al (2010) Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis—a pilot randomized controlled trial. Pediatr Pulmonol 45(4):356–362

    Google Scholar 

  54. Kohler T et al (2010) Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog 6(5):e1000883

    Article  Google Scholar 

  55. Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb Technol 49(2):113–123

    Article  CAS  Google Scholar 

  56. Gamby S et al (2012) Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem Biol 7:1023–1030

    Google Scholar 

  57. Chen G et al (2011) A strategy for antagonizing quorum sensing. Mol Cell 42(2):199–209

    Article  CAS  Google Scholar 

  58. Roy V et al (2010) Cross species quorum quenching using a native AI-2 processing enzyme. ACS Chem Biol 5(2):223–232

    Article  CAS  Google Scholar 

  59. Saeidi N et al (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7:521

    Article  Google Scholar 

  60. Hong SH et al (2012) Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat Commun 3:613

    Article  Google Scholar 

  61. Duan F, March JC (2010) Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci U S A 107(25):11260–11264

    Article  CAS  Google Scholar 

  62. Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10(12):866–876

    Article  CAS  Google Scholar 

  63. Collins CH, Leadbetter JR, Arnold FH (2006) Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat Biotechnol 24(6):708–712

    Article  CAS  Google Scholar 

  64. Kambam PK et al (2008) Directed evolution of LuxI for enhanced OHHL production. Biotechnol Bioeng 101(2):263–272

    Article  CAS  Google Scholar 

  65. Gross A, Rodel G, Ostermann K (2011) Application of the yeast pheromone system for controlled cell–cell communication and signal amplification. Lett Appl Microbiol 52(5):521–526

    Article  CAS  Google Scholar 

  66. Bulter T et al (2004) Design of artificial cell–cell communication using gene and metabolic networks. Proc Natl Acad Sci U S A 101(8):2299–2304

    Article  CAS  Google Scholar 

  67. Chen MT, Weiss R (2005) Artificial cell–cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat Biotechnol 23(12):1551–1555

    Article  CAS  Google Scholar 

  68. Weber W et al (2005) Engineered Streptomyces quorum-sensing components enable inducible siRNA-mediated translation control in mammalian cells and adjustable transcription control in mice. J Gene Med 7(4):518–525

    Article  CAS  Google Scholar 

  69. Wang WD et al (2008) Construction of an artificial intercellular communication network using the nitric oxide signaling elements in mammalian cells. Exp Cell Res 314(4):699–706

    Article  CAS  Google Scholar 

  70. Weber W et al (2009) A synthetic metabolite-based mammalian inter-cell signaling system. Mol Biosyst 5(7):757–763

    Article  CAS  Google Scholar 

  71. Bacchus W et al (2012) Synthetic two-way communication between mammalian cells. Nat Biotechnol 30(10):991–996

    Article  CAS  Google Scholar 

  72. Weber W, Daoud-El Baba M, Fussenegger M (2007) Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc Natl Acad Sci U S A 104(25):10435–10440

    Google Scholar 

  73. Tan C, Marguet P, You L (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat Chem Biol 5(11):842–848

    Article  CAS  Google Scholar 

  74. Marguet P et al (2010) Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology. PLoS One 5(7):e11909

    Article  Google Scholar 

  75. Elowitz MB et al (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186

    Article  CAS  Google Scholar 

  76. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467(7312):167–173

    Article  CAS  Google Scholar 

  77. Munsky B, Neuert G, van Oudenaarden A (2012) Using gene expression noise to understand gene regulation. Science 336(6078):183–187

    Article  CAS  Google Scholar 

  78. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792–1805

    Article  CAS  Google Scholar 

  79. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia-Coli.1. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165(4):477–502

    Article  CAS  Google Scholar 

  80. Young JW et al (2012) Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc 7(1):80–88

    Article  CAS  Google Scholar 

  81. Wyart M, Botstein D, Wingreen NS (2010) Evaluating gene expression dynamics using pairwise RNA FISH data. PLoS Comput Biol 6(11):e1000979

    Article  Google Scholar 

  82. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  CAS  Google Scholar 

  83. Cheng AA, Lu TK (2012) Synthetic biology: an emerging engineering discipline. Annu Rev Biomed Eng 14:155–178

    Article  CAS  Google Scholar 

  84. Kosuri S et al (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28(12):1295–1299

    Article  CAS  Google Scholar 

  85. Ma S, Tang N, Tian J (2012) DNA synthesis, assembly and applications in synthetic biology. Curr Opin Chem Biol 16(3–4):260–267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Related research in the You lab is supported by NIH (1R01-GM098642), a DuPont Young Professorship (LY), a National Science Foundation CAREER award (LY), a David and Lucile Packard Fellowship (LY), North Carolina Biotechnology Center (2012-MRG-1102), and the Office of Naval Research (N00014-12-1-0631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingchong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Payne, S., You, L. (2013). Engineered Cell–Cell Communication and Its Applications. In: Muffler, K., Ulber, R. (eds) Productive Biofilms. Advances in Biochemical Engineering/Biotechnology, vol 146. Springer, Cham. https://doi.org/10.1007/10_2013_249

Download citation

Publish with us

Policies and ethics