Skip to main content

Recent Developments in Manufacturing Oligosaccharides with Prebiotic Functions

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 143))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Roberfroid, Marcel (2007) Prebiotics: the concept revisited. J Nutr 137(3) http://jn.nutrition.org/content/137/3/830S.abstract and http://jn.nutrition.org/content/137/3/830S.full.pdf+html

References

  1. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412. http://jn.nutrition.org/content/125/6/140.short and http://jn.nutrition.org/content/125/6/140.full.pdf+html

    Google Scholar 

  2. Hammes W, Weiss N, Holzapfel W (1992) The genera Lactobacillus and Carnobacterium, vol II., The ProcaryotesSpringer, Berlin

    Google Scholar 

  3. Van Loo J, Cummings J (1999) Br J Nutr 81:121–132

    Google Scholar 

  4. Cummings J, Roberfroid M (1997) Eur J Clin Nutr 51(7):417

    CAS  Google Scholar 

  5. Rumessen J, Gudmand-Hoyer E (1998) Am J Clin Nutr 68(2):357

    CAS  Google Scholar 

  6. Hopkins M, Cummings J, Macfarlane G (1998) J Appl Microbiol 85(2):381

    CAS  Google Scholar 

  7. Wang X, Gibson G (1993) J Appl Bact 75(4):373

    CAS  Google Scholar 

  8. Kleessen B, Sykura B, Zunft H, Blaut M (1997) Am J Clin Nutr 65:1397

    CAS  Google Scholar 

  9. Musatto S, Mancilha I (2007) Carbohydr Polym 68:587

    Google Scholar 

  10. Den Hond E, Geypens B, Ghoos Y (2000) Nutr Res 20(5):731

    Google Scholar 

  11. Gibson G, Wang X (1994) J Appl Microbiol 77:412

    CAS  Google Scholar 

  12. Igarashi M (1994) Bifidus 7:139

    Google Scholar 

  13. Schoterman H (2001) Galactooligosaccharides: properties and health aspects., Advanced dietary fibre technologyBlackwell Science, Oxford

    Google Scholar 

  14. Swennen K, Courtin C, Delcour J (2006) Crit Rev Food Sci Nutr 46:459

    CAS  Google Scholar 

  15. Sekine K, Ohta J (1995) Biol Pharmaceut Bull 18:148

    CAS  Google Scholar 

  16. Reddy B (1998) Br J Nutr 80:219

    Google Scholar 

  17. Franck A, Coussement P (1997) Food ingredients and analysis international 51

    Google Scholar 

  18. Kunz C, Rudloff S (1993) Acta Pädiatr 82:903

    CAS  Google Scholar 

  19. Boehm G, Stahl B (2003) Oligosaccharides, functional dairy, products edn. Woodhead Publishing Ltd. Cambridge UK, Cambridge UK

    Google Scholar 

  20. Moro G, Minoli I (2002) J Pediatr Gastroenterol Nutr 34:291

    CAS  Google Scholar 

  21. Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, Dehlin KE, Loibichler C, Urbanek R, Szépfalusiz (2004) Human milk–derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr Res 56(4):536–540

    Google Scholar 

  22. EFSA (2010a) Consolidated list of Article 13 health claims of references received by EFSA-Part 3 (internet). Parma: Scientific Panel on Dietetic Products, Nutrition and Allergies Unit. URL http://www.efsa.europa.eu/de/ndaclaims13/docs/ndaart13ref01.pdf

  23. EFSA (2010b) Consolidated list of Article 13 health claims of references received by EFSA-Part 3 (internet). Parma: Scientific Panel on Dietetic Products, Nutrition and Allergies Unit. URL http://www.efsa.europa.eu/de/ndaclaims13/docs/ndaart13ref03.pdf

  24. Wallenfels K, Malhotra OP (1961) Adv Carbohydr Chem 16:239

    CAS  Google Scholar 

  25. Voragen AGJ (1998) Trends Food Sci Technol 8–9:328

    Google Scholar 

  26. Gibson GR, Roberfroid MB (1995) J Nutr 125:1401

    CAS  Google Scholar 

  27. Torres DPM, do Pilar M, Goncalves F, Teixeira JA, Rodrigues LR (2010) Compr Rev Food Sci Food Safety 9:438

    CAS  Google Scholar 

  28. Machadoa JJB, Coutinho JA, Macedo EA (2000) Fluid Phase Equilibria 173:121

    Google Scholar 

  29. Arakawa T, Timasheff SN (1982) Biochemistry 21(25):6536

    CAS  Google Scholar 

  30. Padilla B, Ruiz-Matute AI, Belloch C, Cardelle-Cobas A, Corzo N, Manzanares P (2012) J Agric Food Chem 60:5134

    CAS  Google Scholar 

  31. Martinez-Villaluenga C, Cardelle-Cobas A, Olano A, Corzo N, Villamiel M, Jimeno ML (2008) J Agric Food Chem 56:557

    CAS  Google Scholar 

  32. Vera C, Guerrero C, Conejeros R, Illanes A (2012) Enzym Microb Technol 50:188

    CAS  Google Scholar 

  33. Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2011) Process Biochem 46:245

    CAS  Google Scholar 

  34. Goulas A, Tzortzis G, Gibson GR (2007) Int Dairy J 17:648

    CAS  Google Scholar 

  35. Hsu CA, Lee SL, Chou CC (2007) J Agric Food Chem 55:2225

    CAS  Google Scholar 

  36. Joergensen F, Hansen OC, Stougaard P (2001) Appl Microbiol Biotechnol 57:647

    Google Scholar 

  37. Rabiu BA, Jay AJ, Gibson GR, Rastall RA (2001) Appl Environ Microbiol 67(6):2526

    CAS  Google Scholar 

  38. Hung MN, Lee BH (2002) Appl Microbiol Biotechnol 58:439

    CAS  Google Scholar 

  39. Roy D, Daoudi L, Azaola A (2002) J Indus Microbiol Biotechnol 29:281

    CAS  Google Scholar 

  40. Goulas T, Goulas A, Tzortzis G, Gibson GR (2009) Appl Microbiol Biotechnol 84:899

    CAS  Google Scholar 

  41. Osman A, Tzortzis G, Rastall RA, Charalampopoulosa D (2010) J Biotechnol 150:140

    CAS  Google Scholar 

  42. Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2011) J Agric Food Chem 59:3366

    CAS  Google Scholar 

  43. Kamerke C, Pattky M, Huhn C, Elling L (2012) J Mol Catal B Enzym 79:27

    CAS  Google Scholar 

  44. Mozaffar Z, Nakanishi K, Matsuno R, Kamikubo T (1984) Agric Biol Chem 48(12):3053

    CAS  Google Scholar 

  45. Boon MA, Janssen AEM, Van’t Riet K (2000) Enzym Microb Technol 26:271

    CAS  Google Scholar 

  46. Vetere A, Paoletti S (1996) FEBS Lett 399:203

    CAS  Google Scholar 

  47. Yanahira S, Kobayashi T, Suguri T, Nakakoshi M, Miura S, Ishikawa H, Nakajima I (1995) Biosci Biotechnol Biochem 59(6):1021

    CAS  Google Scholar 

  48. Das R, Sen D, Sarkar A, Bhattacharyya S, Bhattacharjee C (2011) Indus Eng Chem Res 50:806

    CAS  Google Scholar 

  49. Li W, Sun Y, Ye H, Zeng X (2010) Eur Food Res Technol 231:55

    CAS  Google Scholar 

  50. Li W, Xiang X, Tang S, Hu B, Tian L, Sun Y, Ye H, Zeng X (2009) J Agric Food Chem 57:3927

    CAS  Google Scholar 

  51. Mozaffar Z, Nakanishi K, Matsuno R (1985) J Food Sci 50(6):1602

    CAS  Google Scholar 

  52. Pruksasri S (2007) Production and separation of galacto-oligosaccharides from lactose by b-galactosidase immobilized on nanofiltration membranes

    Google Scholar 

  53. Usui T, Kubota S, Ohi H (1993) Carbohydr Res 244(2):315

    CAS  Google Scholar 

  54. Onishi N, Yamashiro A, Yokozeki K (1995) Appl Environ Microbiol 11:4022

    Google Scholar 

  55. Rodriguez-Colinas B, de Abreu MA, Fernandez-Arrojo L, de Beer R, Poveda A, Jimenez-Barbero J, Haltrich D, Olmo AOB, Fernandez-Lobato M, Plou FJ (2011) J Agric Food Chem 59:10477

    CAS  Google Scholar 

  56. Montilla A, Corzo N, Lano A (2012) Milchwissenschaft 67(1):14

    CAS  Google Scholar 

  57. Burvall A, Asp NG, Dahlqvist A (1979) Food Chem 4(4):243

    CAS  Google Scholar 

  58. Adamczak M, Charubin D, Bednarski W (2009) Chem Pap 63(2):111

    CAS  Google Scholar 

  59. Chockchaisawasdee S, Athanasopoulos VI, Niranjan K, Rastall RA (2005) Biotechnol Bioeng 89(4):434

    CAS  Google Scholar 

  60. cová KP, Curda L, sún DM, Dryáková A, Diblíková L (2010) J Food Eng 99(4):479

    Google Scholar 

  61. Iwasaki KI, Nakajimab M, Nakao SC (1996) Process Biochem 31(1):69

    CAS  Google Scholar 

  62. Reuter S, Nygaard AR, Zimmermann W (1999) Enzym Microb Technol 25:509

    CAS  Google Scholar 

  63. Bankova E, Bakalova N, Petrova S, Kolev D (2006) Biotechnol Biotechnol Equip 20(3):114

    CAS  Google Scholar 

  64. Toba T, Yokota A, Adachi S (1985) Food Chem 16(2):147

    CAS  Google Scholar 

  65. Vera C, Guerrero C, Illanes A (2011) Carbohydr Res 346:745

    CAS  Google Scholar 

  66. Chen C, Hsu C, Chiang B (2002) Process Biochem 38:801

    CAS  Google Scholar 

  67. Cheng CC, Yu MC, Cheng TC, Sheu DC, Duan KJ, Tai WL (2006) Biotechnol Lett 28:793

    CAS  Google Scholar 

  68. Sakai T, Tsuji H, Shibata S, Hayakawa K, Matsumoto K (2008) J Gen Appl Microbiol 54:285

    CAS  Google Scholar 

  69. Coulier L, Timmermans J, Bas R, Van Den Dool R, Haaksman I, Klarenbeek B, Slaghek T, Van Dongen W (2009) J Agric Food Chem 57(18):8488. doi: 10.1021/jf902549e. URL http://pubs.acs.org/doi/abs/10.1021/jf902549e

    Google Scholar 

  70. US Food and Drug Administration. Agency response letter gras notice no. grn 000236

    Google Scholar 

  71. US Food and Drug Administration. Agency response letter gras notice no. grn 000334

    Google Scholar 

  72. US Food and Drug Administration. Agency response letter gras notice no. grn 000286

    Google Scholar 

  73. Tzortzis G, Vulevic J (2009) Galacto-oligosaccharide prebiotics. Springer, New York, pp 207–244 (Prebiotics and Probiotics - Science and Technology)

    Google Scholar 

  74. Silk DBA, Davis A, Vulevic J, Tzortzis G, Gibson GR (2009) Aliment Pharmacol Ther 29:508

    CAS  Google Scholar 

  75. Mabel M, Sangeetha P, Platel K, Srinivasan K, Prapulla S (2008) Carbohydr Res 343(1):56. doi: 10.1016/j.carres.2007.10.012. URL http://www.sciencedirect.com/science/article/pii/S0008621507004387

  76. Khan R (1993) Low-calorie foods and food ingredients. Springer, London

    Google Scholar 

  77. Crittenden R, Playne M (1996) Trends Food Sci Technol 7(11):353. doi: 10.1016/S0924-2244(96)10038-8. URL http://www.sciencedirect.com/science/article/pii/S0924224496100388

  78. Martinez-Ferez A, Guadix A, Guadix EM (2006) J Membr Sci 276(1–2):23. doi: 10.1016/j.memsci.2005.09.027. URL http://www.sciencedirect.com/science/article/pii/S0376738805006678

  79. Shiomi N (1978) J Facul Agric 58:4

    Google Scholar 

  80. Shiomi N, Yamada J, Izawa M (1976) Agric Biol Chem 40(3):567

    CAS  Google Scholar 

  81. Kurtoglu G, Yildiz S (2011) Gazi Univ J Sci 24(4):877

    Google Scholar 

  82. Monsan P, Paul F (1995) FEMS Microbiol Rev 16(2–3):187. doi:10.1111/j.1574-6976.1995.tb00165.x

    CAS  Google Scholar 

  83. Nishizawa K, Nakajima M, Nabetani H (2001-02-01) Food Sci Technol Res 7(1):39. doi: 10.3136/fstr.7.39

  84. Alvarado M, Maugeri F (2007) J Biotechnol 131:S91–S92

    Google Scholar 

  85. Duan K, Chen J, Sheu D (1994) Enzym Microb Technol 16(5):334

    CAS  Google Scholar 

  86. Jung K, Yun J, Kang K, Lim J, Lee J (1989) Enzyme Microb Technol 11:491

    Google Scholar 

  87. Kilian S, Sutherland F, Meyer P, Preez J (1996) Biotechnol Lett 18:975. doi: 10.1007/BF00154633. URL http://dx.doi.org/10.1007/BF00154633

  88. Park M, Lim J, Kim J, Park S, Kim S (2005) Biotechnol Lett 27:127. doi: 10.1007/s10529-004-7339-x. URL http://dx.doi.org/10.1007/s10529-004-7339-x

  89. Kim BW, Choi JW, Yun JW (1998) Biotechnol Lett 20(11):1031. URL http://www.ingentaconnect.com/content/klu/bile/1998/00000020/00000011/00177101

    Google Scholar 

  90. Ghazi I, Fernandez-Arrojo L, Gomez De Segura A, Alcalde M, Plou FJ, Ballesteros A (2006) J Agric Food Chem 54(8):2964. doi:10.1021/jf053023b

    CAS  Google Scholar 

  91. Smaali I, Jazzar S, Soussi A, Muzard M, Aubry N, Marzouki MN (2012) Biotechnol Bioprocess Eng 17:385. doi:10.1007/s12257-011-0388-9

    CAS  Google Scholar 

  92. Surin S, Seesuriyachan P, Thakeow P, Phimolsiripol Y (2012) J Appl Sci 12(11):1118. doi:10.3923/jas.2012.1118.1123

    CAS  Google Scholar 

  93. Lateef A, KANA EBG (2012) Roman Biotechnol Lett 17(3):7309. URL http://ebooks.unibuc.ro/biologie/RBL/rbl3vol17/11.pdf

  94. Sangeetha P, Ramesh M, Prapulla S (2004) Appl Microbiol Biotechnol 65:530. doi: 10.1007/s00253-004-1618-2. URL http://dx.doi.org/10.1007/s00253-004-1618-2

  95. Fernandez RC, Maresma BG, Juarez A, Martinez J (2004) J Chem Technol Biotechnol 79:268. doi: 10.1002/jctb.967. URL http://onlinelibrary.wiley.com/doi/10.1002/jctb.967/abstract

  96. Sanchez OF, Rodriguez AM, Silva E, Caicedo L (2010) Food Bioprocess Technol 3(4):662. doi:10.1007/s11947-008-0121-7

    CAS  Google Scholar 

  97. Park YK, Almeida MM (1991) World J Microbiol Biotechnol 7(3):331. doi:10.1007/BF00329399

    CAS  Google Scholar 

  98. Mabel MJ, Sangeetha PT, Platel K, Srinivasanb K, Prapulla SG (2008) Carbohydr Res 343(1):55. doi: 10.1016/j.carres.2007.10.012. URL http://www.sciencedirect.com/science/article/pii/S0008621507004387

  99. Lateef A, Oloke JK, Prapulla SG (2007) Turkish J Biol 31(3):147

    CAS  Google Scholar 

  100. Park JP, Oh TK, Yun JW (2001) Process Biochem 37(5):471. doi: 10.1016/S0032-9592(01)00237-0. URL http://www.sciencedirect.com/science/article/pii/S0032959201002370

  101. Patel V, Saunders G, Bucke C (1994) Biotechnol Lett 16(11):1139

    CAS  Google Scholar 

  102. Barthomeuf C, Pourrat H (1995) Biotechnol Lett 17(9):914

    Google Scholar 

  103. Kuhn RC, Filho FM, New Biotechnology (2010) 27(6):862. doi: 10.1016/j.nbt.2010.05.008. URL http://www.sciencedirect.com/science/article/pii/S1871678410004437

  104. Hang YD, Woodams EE (1995) Biotechnol Lett 17(7):741

    CAS  Google Scholar 

  105. Hang YD, Woodams EE (1996) LWT Food Sci Technol 29(5–6):578. doi: 10.1006/fstl.1996.0089. URL http://www.sciencedirect.com/science/article/pii/S0023643896900894

  106. Nemukula A, Mutanda T, Wilhelmi BS, Whiteley CG (2009) Bioresour Technol 100(6):2040. doi: 10.1016/j.biortech.2008.10.022. URL http://www.sciencedirect.com/science/article/pii/S096085240800878X

  107. Tanriseven A, Aslan Y (2005) Enzyme Microb Technol 36(4):550. doi: 10.1016/j.enzmictec.2004.12.001. URL http://www.sciencedirect.com/science/article/pii/S014102290400362X

  108. Ghazi I, Arrojo LF, Arellano HG, Ferrer M, Ballesteros A, Plou FJ (2007) J Biotechnol 128(1):204. doi: 10.1016/j.jbiotec.2006.09.017. URL http://www.sciencedirect.com/science/article/pii/S0168165606007905

  109. Tanriseven A, Gokmen F (1999) Biotechnol Tech 13(3):207

    CAS  Google Scholar 

  110. Nemukula A, Mutanda T, Wilhelmi B, Whiteley C (2009) Bioresour Technol 100(6):2040. doi:10.1016/j.biortech.2008.10.022

    CAS  Google Scholar 

  111. Ghazi I, Fernandez-Arrojo L, Garcia-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2007) J Biotechnol 128(1):204. doi:10.1016/j.jbiotec.2006.09.017

    CAS  Google Scholar 

  112. Yun J, Jung K, Oh J, Lee J (1990) Appl Biochem Biotechnol 24–25:299. doi: 10.1007/BF02920254. URL http://dx.doi.org/10.1007/BF02920254

  113. Chiang CJ, Lee WC, Sheu DC, Duan KJ (1997) Biotechnol Prog 13(5):577. doi: 10.1021/bp970067z. URL http://dx.doi.org/10.1021/bp970067z

  114. Hayashi S, Tubouchi M, Takasaki Y, Imada K (1994) Biotechnol Lett 16:227. doi: 10.1007/BF00134616. URL http://dx.doi.org/10.1007/BF00134616

  115. Tanriseven A, Aslan Y (2005) Enzym Microb Technol 36(4):550. doi:10.1016/j.enzmictec.2004.12.001

    CAS  Google Scholar 

  116. Hayashi S, Kinoshita J, Nonoguchi M, Takasaki Y, Imada K (1991) Biotechnol Lett 13:395. doi: 10.1007/BF01030989. URL http://dx.doi.org/10.1007/BF01030989

  117. Csanádi Z, Sisak C (2008) Hung J Indus Chem 36(1–2):23

    Google Scholar 

  118. Clark DS (1994) Trends Biotechnol 12(11):439. doi: 10.1016/0167-7799(94)90018-3. URL http://www.sciencedirect.com/science/article/pii/0167779994900183

  119. Panesar PS, Panesar R, Singh RS, Kennedy JF, Kumar H (2006) J Chem Technol Biotechnol 81(4):530. doi: 10.1002/jctb.1453. URL http://dx.doi.org/10.1002/jctb.1453

  120. van Hijum S, van Geel-Schutten G, Rahaoui H, van der Maarel M, Dijkhuizen L (2002) Appl Environ Microbiol 68(9):4390. doi: 10.1128/AEM.68.9.4390-4398.2002

    Google Scholar 

  121. Maugeri F, Hernalsteens S (2007) J Mol Catal B Enzym 49(1–4):43. doi: 10.1016/j.molcatb.2007.08.001. URL http://www.sciencedirect.com/science/article/pii/S1381117707001580

  122. Hidaka H, Hirayama M, Sumi N (1988) Agric Biol Chem 52:1181. URL http://ci.nii.ac.jp/naid/110006323785

  123. Fungsin B, Saman P, Meeploy M, Chatanon L, Srichuai A, Sukcharurn J, Artjariyasripong S (2010) In: The 8th international symposium on biocontrol and biotechnology. Pattaya

    Google Scholar 

  124. Sheu DC, Duan KJ, Cheng CY, Bi JL, Chen JY (2002) Biotechnol Prog 18:1282. doi: 10.1021/bp020081y. URL http://onlinelibrary.wiley.com/doi/10.1021/bp020081y/abstract

  125. Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA (2009) J Mol Catal B Enzym 59:76

    CAS  Google Scholar 

  126. Cruz R, Cruz VD, Belini MZ, Belote JG, Vieira CR (1998) Bioresour Technol 65(1–2):139. doi: 10.1016/S0960-8524(98)00005-4. URL http://www.sciencedirect.com/science/article/pii/S0960852498000054

  127. Aziani G, Terenzi H, Jorge J, Guimaraes L (2012) Food Technol Biotechnol 50(1):40

    CAS  Google Scholar 

  128. Antosova M, Polakovie M, Slovinska M, Madlova A, Illeova V, Bales V (2002) Chem Pap 56(6):394

    CAS  Google Scholar 

  129. Dominguez A, Nobre C, Rodrigues LR, Peres A, Torres D, Rocha I, Lima N, Teixeira J (2012) Carbohydr Polym 89(4):1174. doi: http://dx.doi.org/10.1016/j.carbpol.2012.03.091

    Google Scholar 

  130. Yun JW, Jung KH, Oh JW, Lee JH (1990) Appl Biochem Biotechnol 24/25:299

    Google Scholar 

  131. Shin H, Baig S, Lee S, Suh D, Kwon S, Lim Y, Lee J (2004) Bioresour Technol 93(1):59. doi:10.1016/j.biortech.2003.10.008

    CAS  Google Scholar 

  132. Prata M, Mussatto S, Rodrigues L, Teixeira J (2010) Biotechnol Lett 32(6):837. doi:10.1007/s10529-010-0231-y

    CAS  Google Scholar 

  133. Mussatto S, Prata M, Rodrigues L, Teixeira J (2012) Eur Food Res Technol 235:13. doi:10.1007/s00217-012-1728-5

    CAS  Google Scholar 

  134. Sangeetha P, Ramesh M, Prapulla S (2005) Trends Food Sci Technol 16(10):442. doi: 10.1016/j.tifs.2005.05.003. URL http://www.sciencedirect.com/science/article/pii/S0924224405001445

  135. Chien CS, Lee WC, Lin TJ (2001) Enzym Microb Technol 29(4–5):252. doi: 10.1016/S0141-0229(01)00384-2. URL http://www.sciencedirect.com/science/article/pii/S0141022901003842

  136. Prapulla SG, Subhaprada V, Karanth NG, (2000) Microbial production of oligosaccharides : a review. Advance in Applied Microbiology vol. 47. Academic Press, pp 299–343. doi: 10.1016/S0065-2164(00)47008-5. URL http://www.sciencedirect.com/science/article/pii/S0065216400470085

  137. Yun JW (1996) Enzym Microb Technol 19(2):107. doi:10.1016/0141-0229(95)00188-3

    CAS  Google Scholar 

  138. Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2010) Food Chem 121(2):307. doi:10.1016/j.foodchem.2009.12.063

    CAS  Google Scholar 

  139. Shiomi N, Onodera S, Chatterton NJ, Harrison PA (1991) Agric Biol Chem 55(5):1427

    CAS  Google Scholar 

  140. Silva MTMV, Gomes P, Rodrigues A (2012) In: Inamuddin D, Luqman M (eds) Ion exchange technology II. Springer, The Netherlands, pp 109–135

    Google Scholar 

  141. Chilamkurthi S, Willemsen JH, van der Wielen LA, Poiesz E, Ottens M (2012) J Chromatogr A 1239(0):22. doi: 10.1016/j.chroma.2012.03.042. URL http://www.sciencedirect.com/science/article/pii/S0021967312004554

  142. Vaňková K, Polakovič M (2010) Process Biochem 45(8):1325. doi:10.1016/j.procbio.2010.04.025

    Google Scholar 

  143. Pynnonen B (1998) J Chromatogr A 827(2):143. doi: 10.1016/S0021-9673(98)00732-8. URL http://www.sciencedirect.com/science/article/pii/S0021967398007328

  144. Takahashi Y, Goto S (1994) Sep Sci Technol 29(10):1311. doi: 10.1080/01496399408006942. URL http://www.tandfonline.com/doi/abs/10.1080/01496399408006942

  145. Vaňková K, Polakovič M (2012) Chem Eng Technol 35(1):161. doi:10.1002/ceat.201100254

    Google Scholar 

  146. da Silva EAB, de Souza AAU, de Souza SGU, Rodrigues AE (2006) Chem Eng J 118(3):167. doi: 10.1016/j.cej.2006.02.007. URL http://www.sciencedirect.com/science/article/pii/S1385894706000763

  147. Nicoud RM 2000) In: Ahuja S (ed) Handbook of bioseparations, separation science and technology, vol. 2. Academic Press, pp 475–509. doi: 10.1016/S0149-6395(00)80060-4. URL http://www.sciencedirect.com/science/article/pii/S0149639500800604

  148. Vanneste J, Ron SD, Vandecruys S, Soare SA, Darvishmanesh S, der Bruggen BV (2011) Sep Purif Technol 80(3):600. doi: 10.1016/j.seppur.2011.06.016. URL http://www.sciencedirect.com/science/article/pii/S1383586611003546

  149. Vaňková K, Onderková Z, Antosová M, Polakovič M (2008) Chem Pap 62:375. doi: 10.2478/s11696-008-0034-y. URL http://dx.doi.org/10.2478/s11696-008-0034-y

  150. Hernández O, Ruiz-Matute AI, Olano A, Moreno FJ, Sanz ML (2009) Int Dairy J 19(9):531. doi: 10.1016/j.idairyj.2009.03.002. URL http://www.sciencedirect.com/science/article/pii/S0958694609000521

  151. Kuhn RC, Filho FM (2010) New Biotechnol 27(6):862. Papers from Symbiosis - The 14th European congress on biotechnology (Part 1), Barcelona, Sept 2009. doi: 10.1016/j.nbt.2010.05.008. URL http://www.sciencedirect.com/science/article/pii/S1871678410004437

  152. Nobre C, Teixeira J, Rodrigues L (2012) New Biotechnol 29(3):395. doi:10.1016/j.nbt.2011.11.006

    CAS  Google Scholar 

  153. Chinn D, King CJ (1999) Indus Eng Chem Res 38(10):3738. doi: 10.1021/ie990286k. URL http://pubs.acs.org/doi/abs/10.1021/ie990286k

  154. Sen D, Gosling A, Stevens GW, Bhattacharya PK, Barber AR, Kentish SE, Bhattacharjee C, Gras SL (2011) Food Chem 128(3):773. doi: 10.1016/j.foodchem.2011.03.076. URL http://www.sciencedirect.com/science/article/pii/S0308814611004584

  155. Nés FM, Fornari T, Stateva RP, Olano A, nez EI (2009) J Supercrit Fluids 49(1):16. doi: 10.1016/j.supflu.2008.11.014. URL http://www.sciencedirect.com/science/article/pii/S0896844608003859

  156. Nés FM, Olano A, Reglero G, nez EI, Fornari T (2009) Sep Purif Technol 66(2):383. doi: 10.1016/j.seppur.2008.12.006. URL http://www.sciencedirect.com/science/article/pii/S1383586608005091

  157. n és FM, Fornari T, Olano A, n ez EI (2010) J Supercrit Fluids 53(1–3):25. Selected papers from the 9th international symposium on supercritical fluids (ISSF 2009) - new trends in supercritical fluids: energy, materials, processing, Arcachon, France, May 18-20 2009. doi: 10.1016/j.supflu.2010.02.011. URL http://www.sciencedirect.com/science/article/pii/S0896844610000811

  158. Yun JW, Lee MG, Song SK (1994) J Ferment Bioeng 77(2):159. doi:10.1016/0922-338X(94)90316-6

    CAS  Google Scholar 

  159. Sheu D, Lio P, Chen S, Lin C, Duan K (2001) Biotechnol Lett 23:1499. doi: 10.1023/A:1011689531625. URL http://dx.doi.org/10.1023/A:1011689531625

  160. Sheu DC, Duan KJ, Cheng CY, Bi JL, Chen JY (2002) Biotechnol Prog 18(6):1282. doi: 10.1021/bp020081y. URL http://dx.doi.org/10.1021/bp020081y

  161. Cheng CC, Yu MC, Cheng TC, Sheu DC, Duan KJ, Tai WL (2006) Biotechnol Lett 28:793. doi: 10.1007/s10529-006-9002-1. URL http://dx.doi.org/10.1007/s10529-006-9002-1

  162. Splechtna B, Petzelbauer I, Baminger U, Haltrich D, Kulbe KD, Nidetzky B (2001) Enzym Microb Technol 29(6-7):434. doi: 10.1016/S0141-0229(01)00412-4. URL http://www.sciencedirect.com/science/article/pii/S0141022901004124

  163. Oda Y, Ouchi K (1991) Enzym Microb Technol 13(6):495. doi:10.1016/0141-0229(91)90008-X

    CAS  Google Scholar 

  164. Crittenden R, Playne M (2002) Appl Microbiol Biotechnol 58:297. doi: 10.1007/s00253-001-0886-3. URL http://dx.doi.org/10.1007/s00253-001-0886-3

  165. Li Z, Xiao M, Lu L, Li Y (2008) Process Biochem 43(8):896. doi: 10.1016/j.procbio.2008.04.016. URL http://www.sciencedirect.com/science/article/pii/S1359511308001281

  166. Pinelo M, Jonsson G, Meyer AS (2009) Sep Purif Technol 70(1):1. doi: 10.1016/j.seppur.2009.08.010. URL http://www.sciencedirect.com/science/article/pii/S1383586609003608

  167. Grandison A, Goulas A, Rastall R, Songklanakarin (2002) J Sci Technol 24(Supplement):915. URL http://centaur.reading.ac.uk/13347/

  168. Kuhn RC, Palacio L, Prádanos P, Hernández A, Filho FM (2011) Desalin Water Treat 27(1–3):18. doi:10.5004/dwt.2011.2038

    CAS  Google Scholar 

  169. Li W, Li J, Chen T, Chen C (2004) J Membr Sci 245(1–2):123. doi:10.1016/j.memsci.2004.07.021

    CAS  Google Scholar 

  170. Goulas AK, Kapasakalidis PG, Sinclair HR, Rastall RA, Grandison AS (2002) J Membr Sci 209(1):321. doi: 10.1016/S0376-7388(02)00362-9. URL http://www.sciencedirect.com/science/article/pii/S0376738802003629

    Google Scholar 

  171. Feng Y, Chang X, Wang W, Ma R (2009) J Taiwan Inst Chem Eng 40(3):326. Festschrift Issue In honor of Professor Yi Hua Ma. doi: 10.1016/j.jtice.2008.12.003. URL http://www.sciencedirect.com/science/article/pii/S1876107008001958

  172. Botelho-Cunha VA, Mateus M, Petrus JC, de Pinho MN (2010) Biochem Eng J 50(1–2):29. doi: 10.1016/j.bej.2010.03.001. URL http://www.sciencedirect.com/science/article/pii/S1369703X1000080X

  173. Nakao S, Kimura S (1982) J Chem Eng Japan 15(2):200

    CAS  Google Scholar 

  174. Kovács Z, Samhaber W (2008) Membrántechnika 12(2):22

    Google Scholar 

  175. Kuhn R, Filho FM, Silva V, Palacio L, Hernández A, Prádanos P (2010) J Membr Sci 365:356

    CAS  Google Scholar 

  176. Lightfoot EN (2005) Sep Sci Technol 40(4):739. doi: 10.1081/SS-200047994. URL http://www.tandfonline.com/doi/abs/10.1081/SS-200047994

  177. Siew WE, Livingston AG, Ates C, Merschaert A (2013) Sep Purif Technol 102(0):1. doi: 10.1016/j.seppur.2012.09.017. URL http://www.sciencedirect.com/science/article/pii/S1383586612004923

  178. Nishizawa K, Nakajima M, Nabetani H (2000) Biotechnol Bioeng 68(1):92

    CAS  Google Scholar 

  179. Sen D, Sarkar A, Gosling A, Gras SL, Stevens GW, Kentish SE, Bhattacharya P, Barber AR, Bhattacharjee C (2011) J Membr Sci 378(1–2):471. Membranes for a Sustainable Future Section. doi: 10.1016/j.memsci.2011.05.032. URL http://www.sciencedirect.com/science/article/pii/S0376738811003711

    Google Scholar 

  180. Palai T, Bhattacharya PK (2013) J Biosci Bioeng 115(6):668. doi: http://dx.doi.org/10.1016/j.jbiosc.2012.12.014. URL http://www.sciencedirect.com/science/article/pii/S1389172312005282

  181. Jochems P, Satyawali Y, Roy SV, Doyen W, Diels L, Dejonghe W, Enzym Microb Technol 49(6–7):580 (2011). Special Issue on Papers presented at the 14th international biotechnology symposium and exhibition (IBS2010). doi: 10.1016/j.enzmictec.2011.06.010. URL http://www.sciencedirect.com/science/article/pii/S014102291100127X

  182. Güleç HA (2013) Colloids Surf B Biointerfaces 104(0):83. doi: 10.1016/j.colsurfb.2012.11.039. URL http://www.sciencedirect.com/science/article/pii/S092777651200687X

  183. Ulbricht M, Papra A (1997) Enzym Microb Technol 20(1):61

    CAS  Google Scholar 

  184. Engel L, Ebrahimi M, Czermak P (2008) Desalination 224(1–3):46. Issues 1 and 2: 11th Aachener Membran Kolloquium, 28-29 March 2007, Aachen, Issue 3: Aqua 2006, 2nd international conference on water science and technology - integrated management of water resources, November 2006, Athens. doi: 10.1016/j.desal.2007.04.078. URL http://www.sciencedirect.com/science/article/pii/S0011916408000295

  185. Engel L, Schneider P, Ebrahimi M, Czermak P (2007) Open Food Sci J 1:17

    CAS  Google Scholar 

  186. Ebrahimi M, Engel L, Peter S, Grau K, Czermak P (2006) Desalination 200(1–3):509. Euromembrane 2006. doi: 10.1016/j.desal.2006.03.415. URL http://www.sciencedirect.com/science/article/pii/S0011916406007193

  187. Mignard D, Glass D (2001) J Membr Sci 186(1):133. doi:10.1016/S0376-7388(00)00661-X

    CAS  Google Scholar 

  188. Prádanos P, Hernández A, Calvo J, Tejerina F (1996) J Membr Sci 114(1):115. doi:10.1016/0376-7388(95)00324-X

    Google Scholar 

  189. Meireles M, Aimar P, Sanchez V (1991) Biotechnol Bioeng 38:528

    CAS  Google Scholar 

  190. van Reis R, Goodrich EM, Yson CL, Frautschy LN, Whiteley R, Zydney AL (1997) J Membr Sci 130(1–2):123 10.1016/S0376-7388(97)00012-4

    Google Scholar 

  191. Bacchin P, Aimar P, Field R (2006) J Membr Sci 281(1–2):42 10.1016/j.memsci.2006.04.014

    CAS  Google Scholar 

  192. Kim KJ, Sun P, Chen V, Wiley DE, Fane AG (1993) J Membr Sci 80(1):241. doi:10.1016/0376-7388(93)85148-P

    CAS  Google Scholar 

  193. Field R, Hughes D, Cui Z, Tirlapur U (2008) Desalination 227(1–3):132. doi:10.1016/j.desal.2007.08.004

    CAS  Google Scholar 

  194. Giorno L, Drioli E (2000) Trends Biotechnol 18(8):339. doi: 10.1016/S0167-7799(00)01472-4. URL http://www.sciencedirect.com/science/article/pii/S0167779900014724

  195. Rios G, Belleville M, Paolucci D, Sanchez J (2004) J Membr Sci 242(1–2):189. Membrane Engineering Special Issue. doi: 10.1016/j.memsci.2003.06.004. URL http://www.sciencedirect.com/science/article/pii/S0376738804003230

  196. Gonzalez R, Ebrahimi M, Czermak P (2009) Open Food Sci J 3:1. doi:10.2174/1874256400903010001

    CAS  Google Scholar 

  197. Czermak P, Ebrahimi M, Kandzia S, Klein K, Sawatzki G (2002) Chemie Ingenieur Technik 74(5):645. doi: 10.1002/1522-2640(200205)74:5<645::AID-CITE645>3.0.CO;2-W. URL http://dx.doi.org/10.1002/1522-2640(200205)74:5<645::AID-CITE645>3.0.CO;2-W

  198. Ebrahimi M, Gonzalez R (2006) Czermak P Desalination 200(1–3):686. Euromembrane 2006. doi: 10.1016/j.desal.2006.03.468. URL http://www.sciencedirect.com/science/article/pii/S0011916406006874

  199. Czermak P, Ebrahimi M, Grau K, Netz S, Sawatzki G, Pfromm P (2004) J Membr Sci 232(8):85

    CAS  Google Scholar 

  200. Foda MI, Lopez-Leiva M (2000) Process Biochem 35(6):581. doi:10.1016/S0032-9592(99)00108-9

    CAS  Google Scholar 

  201. Pocedičová K, Čurda L, Mišún D, Dryáková A, Diblíková L (2010) J Food Eng 99(4):479. doi:10.1016/j.jfoodeng.2010.02.001

    Google Scholar 

  202. Maria G (2012) Comput Chem Eng 36:325. doi:10.1016/j.compchemeng.2011.06.006

    CAS  Google Scholar 

  203. Bélafi-Bakó K, Eszterle M, Kiss K, Nemestóthy N, Gubicza L (2007) J Food Eng 78(2):438. doi: 10.1016/j.jfoodeng.2005.10.012. URL http://www.sciencedirect.com/science/article/pii/S026087740500703X

  204. Olano-Martin E, Mountzouris K, Gibson G, Rastall R (2001) J Food Sci 66(7):966. doi: 10.1111/j.1365-2621.2001.tb08220.x. URL http://dx.doi.org/10.1111/j.1365-2621.2001.tb08220.x

  205. Petzelbauer I, Splechtna B, Nidetzky B (2002) Biotechnol Bioeng 77(4):394. doi: 10.1002/bit.10106. URL http://dx.doi.org/10.1002/bit.10106

  206. Das R, Sen D, Sarkar A, Bhattacharyya S, Bhattacharjee C (2011) Indus Eng Chem Res 50(2):806. doi: 10.1021/ie1016333. URL http://pubs.acs.org/doi/abs/10.1021/ie1016333

  207. Avalakki UK, Maheswaran P Saravanan R (2011) Process for production of galactooligosaccharides (gos)

    Google Scholar 

Download references

Acknowledgments

We thank the Hessen State Ministry of Higher Education, Research and the Arts for the financial support within the Hessen Initiative for Scientific and Economic Excellence (LOEWE Program). The first author is grateful for the Marie Curie FP7 Integration Grant provided by the 7th European Union Framework Programme (PCIG11-GA-2012-322219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Czermak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kovács, Z., Benjamins, E., Grau, K., Ur Rehman, A., Ebrahimi, M., Czermak, P. (2013). Recent Developments in Manufacturing Oligosaccharides with Prebiotic Functions. In: Zorn, H., Czermak, P. (eds) Biotechnology of Food and Feed Additives. Advances in Biochemical Engineering/Biotechnology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_237

Download citation

Publish with us

Policies and ethics