Skip to main content

Microbial High Cell Density Fermentations in a Stirred Single-Use Bioreactor

  • Chapter
  • First Online:
Disposable Bioreactors II

Abstract

Microbial fermentations are of major importance in the field of biotechnology. The range of applications is rather extensive, for example, the production of vaccines, recombinant proteins, and plasmids. During the past decades single-use bioreactors have become widely accepted in the biopharmaceutical industry. This acceptance is due to the several advantages these bioreactors offer, such as reduced operational and investment costs. Although this technology is attractive for microbial applications, its usage is rarely found. The main limitations are a relatively low oxygen transfer rate and cooling capacity. The aim of this study was to examine a stirred single-use bioreactor for its microbial suitability. Therefore, the important process engineering parameters volumetric mass transfer coefficient (k L a), mixing time, and the heat transfer coefficient were determined. Based on the k L a characteristics a mathematical model was established that was used with the other process engineering parameters to create a control space. For a further verification of the control space for microbial suitability, Escherichia coli and Pichia pastoris high cell density fermentations were carried out. The achieved cell density for the E. coli fermentation was OD600 = 175 (DCW = 60.8 g/L). For the P. pastoris cultivation a wet cell weight of 381 g/L was reached. The achieved cell densities were comparable to fermentations in stainless steel bioreactors. Furthermore, the expression of recombinant proteins with titers up to 9 g/L was guaranteed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( a \) :

Empirical value for mathematical k L a description

\( A \) :

Heat transfer area

AOX:

Alcohol oxidase

\( b \) :

Empirical value for mathematical k L a description

\( \Updelta c \) :

Concentration difference

\( \Updelta c_{0} \) :

Initial concentration difference

\( C(t) \) :

Dissolved oxygen concentration

\( C^{*} \) :

Oxygen saturation concentration

CQA:

Critical quality attributes

\( d_{1} \) :

Vessel diameter

\( d_{2} \) :

Impeller diameter

DCU:

Digital control unit

DCW:

Dry cell weight

E. coli :

Escherichia coli

\( F(t) \) :

Feed flow rate

F G :

Gas flow rate

HCDF:

High cell density fermentation

IPTG:

Isopropyl-β-D-thiogalactopyranoside

\( k \) :

Heat transfer coefficient

\( k_{L} a \) :

Volumetric mass transfer coefficient

KPP:

Key process parameters

\( M \) :

Goodness of mixture

\( n \) :

Stirrer speed

\( Ne \) :

Newton number

OD600 :

Optical density measured at 600 nm

\( OTR \) :

Oxygen transfer rate

\( OUR \) :

Oxygen uptake rate

\( P/V \) :

Power input per volume

P. pastoris :

Pichia pastoris

pO2 :

Oxygen partial pressure

\( q_{{O_{2} }} \) :

Specific oxygen uptake rate

\( Q \) :

Heat flow

\( Q_{prod} \) :

Released heat flow

QbD:

Quality by design

RM:

Rocking motion

RO:

Reverse osmoses

\( s \) :

Thickness of the reactor wall

S :

Correlation factor for the heat generation

\( S_{Feed} \) :

Concentration of the feed solution

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

STR:

Stirred tank reactor

t :

Time

\( \Updelta T \) :

Temperature difference

u :

Tip speed

\( V \) :

Filling volume of the bioreactor

\( V_{0} \) :

Initial volume

WCW:

Wet cell weight

\( X \) :

Cell density (dry cell weight)

\( X_{0} \) :

Initial cell density

\( Y_{{X/O_{2} }} \) :

Oxygen yield coefficient

\( Y_{X/S} \) :

Yield coefficient

\( Z \) :

Empirical value for mathematical k L a description

\( \alpha_{1} \) :

Convective heat transfer of the cooling liquid inside the double wall

\( \alpha_{2} \) :

Convective heat transfer of the reactor wall into the medium

\( \lambda \) :

Wall thermal conductivity

\( \mu \) :

Specific growth rate

\( \mu_{set} \) :

Selected specific growth rate for the fed batch

ρ :

Density

θ:

Mixing time

\( \nu \) :

Superficial air velocity

References

  1. Waegeman H, Mey HD (2012) Increasing recombinant protein production in E. coli by an alternative method to reduce acetate. Advances in Applied Biotechnology. http://www.intechopen.com/books/advances-in-appliedbiotechnology/increasing-recombinant-protein-production-in-e-coli-by-an-alternative-method-to-reduce-acetate. Accessed 27 Jan 2013

  2. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol. doi:10.1038/nbt0803-865

    Google Scholar 

  3. Lee S (1996) High cell-density culture of Escherichia coli. Elsevier Science Ltd. doi:10.1016/0167-7799(96)80930-9

    Google Scholar 

  4. Cregg J.M. (2007) Methods in molecular biology.In: Pichia protocols, vol 389 2nd edn, pp 119–138. Humana Press, Totowa

    Google Scholar 

  5. Chen R (2011) Bacterial expression systems for recombinant proteins E. coli and beyond. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.09.013

    Google Scholar 

  6. Mücke M, Ostendorp R, Leonhartsberger S (2009) E. coli secretion technologies enable production of high yields of active human antibody fragments. BioProcess Int 9:2–6

    Google Scholar 

  7. Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Engin/Biotechnol. doi:10.1007/10_2008_15

    Google Scholar 

  8. Brecht R (2009) Disposable bioreactors maturation into pharmaceutical manufacturing. Adv Biochem Engin/Biotechnol. doi:10.1007/10_2008_33

    Google Scholar 

  9. Eibl D, Peuker T, Eibl R (2010) Single-use equipment in biopharmaceutical manufacture: a brief introduction. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Chapter  Google Scholar 

  10. Eibl R, Eibl D (2009) Application of disposable bag bioreactors in tissue engineering and for the production of therapeutic agents. Adv Biochem Engin/Biotechnol 112:183–207. doi:10.1007/10_2008_3

    Article  CAS  Google Scholar 

  11. Glazyrina J, Materne E, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P (2010) High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Fact. doi:10.1186/1475-2859-9-42

    Google Scholar 

  12. Singh V (1998) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology. doi:10.1023/A:1008025016272

    Google Scholar 

  13. Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2422-9

    Google Scholar 

  14. Mikola M, Seto J, Amanullah A (2007) Evaluation of a novel wave bioreactor cellbag for aerobic yeast cultivation. Bioprocess Biosyst Eng. doi:10.1007/s00449-007-0119-y

    Google Scholar 

  15. Dreher T, Husemann U, Zahnow C, Wilde DD, Adams T, Greller G (2013) High cell density Escherichia coli cultivation in different single-use bioreactor systems. Chem Ing Tech. doi:10.1002/cite.201200122

    Google Scholar 

  16. Terrier B, Courtois D, Hénault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Pétiard V (2007) Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng doi:10.1002/bit.21187

  17. Junne S, Solymosi T, Oosterhuis N, Neubauer P (2013) Cultivation of cells and microorganisms in wave-mixed disposable bag bioreactors at different scales. Chem Ing Tech. doi:10.1002/cite.201200149

    Google Scholar 

  18. Galliher PM, Hodge G, Guertin P, Chew C, Deloggie T (2010) Single-use bioreactor platform for microbial fermentation in single-use technology in biopharmaceutical manufacture. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  19. Noack U, Verhoeye F, Kahlert W, Wilde DD, Greller G (2010) Disposable stirred tank reactor BIOSTAT® CultiBag STR. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  20. Krause M, Ukkonen K, Haataja T, Ruottinen M, Glumoff T, Neubauer A, Neubauer P, Vasala A (2010) A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microb Cell Fact. doi:10.1186/1475-2859-9-11

    Google Scholar 

  21. Juran JM (1992) Juran on quality by design. Free Press, New York

    Google Scholar 

  22. CMC Biotech Working Group (2009) A-mab: a case study in bioprocess development. www.ispe.org/pqli/a-mab-case-study-version-2.1. Accessed 12 Dec 2012

  23. ISPE http://www.ispe.org/glossary?term=Key+Process+Parameter+(KPP) Accessed 12 Dec 2012

  24. Lara AR, Galindo E, Ramirez OT, Palomares A (2006) Living with heterogeneities in bioreactors. Mol Biotech. doi:10.1385/MB:34:3:355

    Google Scholar 

  25. Kraume M. (2002) Mischen und Rühren, Grundlage und moderne Verfahren. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  26. Xing Z, Kenty B, Li Z, Lee S (2009) Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnol Bioeng. doi:10.1002/bit.22287

    Google Scholar 

  27. Stanbury PF, Whitaker A, Hall J (1995) Principles of fermentation technology. Pergamon Oxford, Oxford

    Google Scholar 

  28. Ochoa FG, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. doi:10.1016/j.biotechadv.2008.10.006

    Google Scholar 

  29. Harrison D, Loveless J (1971) The effect of growth conditions on respiratory activity and growth efficiency in facultative anaerobe grown chemostat culture. J Gen Microbiol. doi:10.1099/00221287-68-1-35

    Google Scholar 

  30. Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, Roß A, Deckwer WD (1991) High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol. doi:10.1016/0168-1656(91)90032-Q

    Google Scholar 

  31. Riet KV (1983) Mass transfer in fermentation. Trends Biotechnol. doi:10.1016/0167-7799(83)90034-3

    Google Scholar 

  32. Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng. doi:10.1016/S1389-1723(04)70218-2

    Google Scholar 

  33. Shuler ML, Kargi F (2006) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  34. Cooney CL, Wang DIC, Mateles RI (1968) Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol Bioeng. doi:10.1002/bit.260110302

    Google Scholar 

  35. VDI-Wärmeatlas (2006) 19th edn, chapter 3, doi: 10.1007/978-3-540-32218-4

  36. Wise WS (1951) The Measurement of the aeration of culture media. J Gen Microbiol. doi:10.1099/00221287

    Google Scholar 

  37. Kocourek A (2002) Darstellung und Charakterisierung der katalytischen Domäne der humanen Makrophagenelastase. http://bieson.ub.uni-bielefeld.de/volltexte/2003/223/pdf/0097.pdf. Accessed 12 Dec 2012

  38. Cereghino JL, Cregg JM (2006) Hetrologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. doi:10.1111/j.15746976.2000.tb00532.x

    Google Scholar 

  39. Eibl D, Eisenkrätzer D (2012) Personal communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dreher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dreher, T. et al. (2013). Microbial High Cell Density Fermentations in a Stirred Single-Use Bioreactor. In: Eibl, D., Eibl, R. (eds) Disposable Bioreactors II. Advances in Biochemical Engineering/Biotechnology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_189

Download citation

Publish with us

Policies and ethics