Skip to main content

Diagnosis of Coronary Artery Disease

  • Chapter
Noninvasive Imaging of Myocardial Ischemia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mackay J, Mensah G. Atlas of Heart Disease and Stroke. Geneva: World Health Organization; 2004:1–112.

    Google Scholar 

  2. Ockene IS, Miller NH. Cigarette smoking, cardiovascular disease, and stroke: a statement for healthcare professionals from the American Heart Association. American Heart Association Task Force on Risk Reduction. Circulation 1997;96:3243–3247.

    PubMed  CAS  Google Scholar 

  3. Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am Heart J 1990;120:963–969.

    Article  PubMed  CAS  Google Scholar 

  4. Coronary Artery Surgery Study (CASS). A randomised trial of coronary artery bypass surgery. Survival data. Circulation 1983;68:939–950.

    Google Scholar 

  5. Gibbons RJ, Abrams J, Chatterjee K, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina — summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Chronic Stable Angina). J Am Coll Cardiol 2003;41:159–168.

    Article  PubMed  Google Scholar 

  6. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 1979;300:1350–1358.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97:1837–1847.

    PubMed  CAS  Google Scholar 

  8. Master AM, Oppenheimer ET. A simple exercise tolerance test for circulatory efficiency with standard tables for normal individuals. Am J Med Sci 1929;177:223.

    Google Scholar 

  9. Gibbons RJ, Balady GJ, Brocker JT, et al. ACC/AHA 2002 guideline update for exercise testing: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). 2002. Available at www.acc.org/clinical/guidelines/exercise/dirIndex.htm.

    Google Scholar 

  10. Colby J, Hakki AH, Iskandrian AS, et al. Hemodynamic, angiographic and scintigraphic correlates of positive exercise electrocardiograms: emphasis on strongly positive exercise electrocardiograms. J Am Coll Cardiol 1983;2:21–29.

    PubMed  CAS  Google Scholar 

  11. Fortuin NJ, Friesinger GC. Exercise-induced ST segment elevation: clinical, electrocardiographic and arteriographic studies in twelve patients. Am J Med 1970;49:459–464.

    Article  PubMed  CAS  Google Scholar 

  12. Chahine RA, Raizner AE, Ishimori T. The clinical significance of exercise-induced ST-segment elevation. Circulation 1976;54:209–213.

    PubMed  CAS  Google Scholar 

  13. Weiner DA, Ryan TJ, McCabe CH, et al. Value of exercise testing in determining the risk classification and the response to coronary artery bypass grafting in three-vessel coronary artery disease: a report from the Coronary Artery Surgery Study (CASS) registry. Am J Cardiol 1987;60:262–266.

    Article  PubMed  CAS  Google Scholar 

  14. Mark DB, Hlatky MA, Harrell FE Jr, Lee KL, Califf RM, Pryor DB. Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med 1987;106:793–800.

    PubMed  CAS  Google Scholar 

  15. Shaw LJ, Peterson ED, Shaw LK, et al. Use of a prognostic treadmill score in identifying diagnostic coronary disease subgroups. Circulation 1998;98:1622–1630.

    PubMed  CAS  Google Scholar 

  16. Mark DB, Shaw L, Harrell FE Jr, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med 1991;325:849–853.

    Article  PubMed  CAS  Google Scholar 

  17. Kwok Y, Kim C, Grady D, Segal M, Redberg R. Metaanalysis of exercise testing to detect coronary artery disease in women. Am J Cardiol 1999;83:660–666.

    Article  PubMed  CAS  Google Scholar 

  18. Kemp HG, Kronmal RA, Vlietstra RE, et al. Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol 1986;7:479–483.

    PubMed  CAS  Google Scholar 

  19. Sharaf BL, Pepine CJ, Kerensky RA, et al. Detailed angiographic analysis of women with suspected ischemic chest pain (pilot phase data from the NHLBIsponsored Women’s Ischemia Syndrome Evaluation [WISE] Study Angiographic Core Laboratory). Am J Cardiol 2001;87:937–941.

    Article  PubMed  CAS  Google Scholar 

  20. Waters DD, Gordon D, Rossouw JE, Cannon RO, Collins P, Herrington DM. AHA/NHLBI Conference Proceedings. Women’s Ischemic Syndrome Evaluation [WISE]. Current status and future research directions. Lessons from hormone replacement trials. Circulation 2004;109:e53–e55.

    Article  PubMed  Google Scholar 

  21. Mieres JH, Shaw LJ, Arai A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease. Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association. Circulation 2005;111:682–696.

    Article  PubMed  Google Scholar 

  22. Wong TY, Klein R, Sharrett AR, et al. Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis Risk in Communities Study. JAMA 2002;287:1153–1159.

    Article  PubMed  Google Scholar 

  23. Weich H, Strauss H, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977;56:188–191.

    PubMed  CAS  Google Scholar 

  24. Watson DD, Glover DK. Overview of kinetics and modeling. In: Zaret BL, Beller GA, eds. Nuclear Cardiology. State of the Art and Future Directions. St. Louis: Mosby; 1999:3–12.

    Google Scholar 

  25. Pohost GM, et al. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after single dose of thallium-201. Circulation 1977;55:294–302.

    PubMed  CAS  Google Scholar 

  26. Dilsizian V, et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–146.

    Article  PubMed  CAS  Google Scholar 

  27. Basu S, Senior R, Raval U, Lahiri A. Superiority of nitrate-enhanced Tl-201 over conventional redistribution Tl-201 imaging for prognostic evaluation after myocardial infarction and thrombolysis. Circulation 1997;96:2932–2937.

    PubMed  CAS  Google Scholar 

  28. Loong CY, Anagnostopoulos C. Diagnosis of coronary artery disease by radionuclide myocardial perfusion imaging. Heart 2003;90(suppl V):v2–v9.

    Google Scholar 

  29. Glover DK, Ruiz M, Yang JY, Smith WH, Watson DD, Beller GA. Myocardial Tc-99m-tetrofosmin uptake during adenosine-induced vasodilatation with either a critical or mild coronary stenosis. Comparison with Tl-201 and regional myocardial blood flow. Circulation 1997;96:2332–2338.

    PubMed  CAS  Google Scholar 

  30. Marshall R, Leidholt EM Jr, Zhang DY, Barnett CA. Technetium-99m-hexakis 2 methoxy-2-isobutyl isonitrile and thallium-201 extraction, washout, and retention at varying coronary flow rates in rabbit heart. Circulation 1990;82:998–1007.

    PubMed  CAS  Google Scholar 

  31. Leon AR, Eisner RL, Martin SE, Schmarkey LS, Aaron AM, Boyers AS, et al. Comparison of single-photon emission computed tomography (SPECT) myocardial perfusion imaging with thallium-201 and technetium-99m sestamibi in dogs. J Am Coll Cardiol 1992;20:1612–1625.

    PubMed  CAS  Google Scholar 

  32. Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996;93:905–914.

    PubMed  CAS  Google Scholar 

  33. Bateman TM, O’Keefe JH Jr, Dong VM, Barnhart C, Ligon RW. Coronary angiography rates after stress single-photon emission computed tomographic scintigraphy. J Nucl Cardiol 1995;2:217–223.

    Article  PubMed  CAS  Google Scholar 

  34. Iskandrian AS, Heo J, Kong B, et al. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 1989;14:1477–1486.

    Article  PubMed  CAS  Google Scholar 

  35. Anagnostopoulos C, Harbinson M, Kelion A, et al. Procedure guidelines for radionuclide myocardial perfusion imaging. Heart 2004;90(suppl I):i1–10.

    Article  PubMed  Google Scholar 

  36. Maddahi J, Van Train K, Pringent F, et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: optimization and prospective validation of a new technique. J Am Coll Cardiol 1989;14:1689–1699.

    PubMed  CAS  Google Scholar 

  37. Mahmarian JJ, Boyce TM, Goldberg RK, et al. Quantitative exercise thallium-201 single photon emission computed tomography for the enhanced diagnosis of ischemic heart disease. J Am Coll Cardiol 1990;15:318–329.

    PubMed  CAS  Google Scholar 

  38. Chae SC, Heo J, Iskandrian AS, et al. Identification of extensive coronary artery disease in women by exercise single-photon emission computed tomographic (SPECT) thallium imaging. J Am Coll Cardiol 1993;21:1305–1311.

    PubMed  CAS  Google Scholar 

  39. Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99-sestamibi myocardial tomograms. J Nucl Med 1994;35:609–618.

    PubMed  Google Scholar 

  40. Nishimura S, Mahmarian JJ, Boyce TM, et al. Equivalence between adenosine and exercise thallium-201 myocardial tomography: a multicentre, prospective, crossover trial. J Am Coll Cardiol 1992;20:265–275.

    PubMed  CAS  Google Scholar 

  41. O’Keefe HH Jr, Bateman TM, Barnhart CS. Adenosine thallium-201 is superior to exercise thallium-201 for detecting coronary artery disease in patients with left bundle branch block. J Am Coll Cardiol 1993;21:1332–1338.

    PubMed  Google Scholar 

  42. Ebersole DG, Heironimus J, Toney MO, Billingsley J. Comparison of exercise and adenosine technetium-99m sestamibi myocardial scintigraphy for diagnosis of coronary artery disease in patients with left bundle branch block. Am J Cardiol 1993;71:450–453.

    Article  PubMed  CAS  Google Scholar 

  43. Wilson RF, Wyche K, Christensen BV, et al. Effects of adenosine on human coronary arterial circulation. Circulation 1990;82:1595–1606.

    PubMed  CAS  Google Scholar 

  44. Chan SY, Brunken RC, Czernin J, et al. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol 1992;20:979–985.

    PubMed  CAS  Google Scholar 

  45. Akinboboye O, Idris O, Chou RL, et al. Absolute quantitation of coronary steal induced by intravenous dipyridamole. J Am Coll Cardiol 2001;37:109–116.

    Article  PubMed  CAS  Google Scholar 

  46. Reyes E, Wechalekar S, Loong CY, et al. Acute myocardial infarction during adenosine myocardial perfusion imaging. J Nucl Cardiol 2004;11:97–99.

    Article  PubMed  Google Scholar 

  47. Smits P, Lenders JW, Thien T. Caffeine and theophylline attenuate adenosine-induced vasodilation in humans. Clin Pharmacol Ther 1990;48:410–418.

    Article  PubMed  CAS  Google Scholar 

  48. Taillefer R, Ahlberg AW, Massod Y, et al. Acute betablockade reduces the extent and severity of myocardial perfusion defects with dipyridamole Tc-99m sestamibi SPECT imaging. J Am Coll Cardiol 2003;42:1475–1483.

    Article  PubMed  CAS  Google Scholar 

  49. O’Keefe JH, Bateman TM, Handlin LR, Barnhart CS. Four-versus 6-minute infusion protocol for adenosine thallium-201 single photon emission computed tomography imaging. Am Heart J 1995;129:482–487.

    Article  PubMed  Google Scholar 

  50. Villegas BJ, Hendel RC, Dahlberg ST, McSherry BA, Leppo JA. Comparison of a 3-versus 6-minute infusion of adenosine in thallium-201 myocardial perfusion imaging. Am Heart J 1993;126:103–107.

    PubMed  CAS  Google Scholar 

  51. Treuth MG, Reyes GA, He XZ, Cwajg E, Mahmarian JJ, Verani MS. Tolerance and diagnostic accuracy of an abbreviated adenosine infusion for myocardial scintigraphy: a randomized prospective study. J Nucl Cardiol 2001;8:548–554.

    Article  PubMed  CAS  Google Scholar 

  52. Shanoudy H, Raggi P, Beller GA, et al. Comparison of technetium-99m tetrofosmin and thallium-201 singlephoton emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol 1998;31:331–337.

    Article  PubMed  CAS  Google Scholar 

  53. Soman P, Taillefer R, de Puey EG, Udelson JE, Lahiri A. Enhanced detection of reversible perfusion defects by Tc-99m sestamibi compared to Tc-99m tetrofosmin during vasodilator stress SPECT imaging in mild-tomoderate coronary artery disease. J Am Coll Cardiol 2001;37:458–462.

    Article  PubMed  CAS  Google Scholar 

  54. Ranhosky A, Kempthorne-Rawson J. The safety of intravenous dipyridamole thallium myocardial perfusion imaging. Circulation 1990;81:1205–1209.

    PubMed  CAS  Google Scholar 

  55. Cerqueira M, Verani M, Schwaiger M, et al. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan multicentre trial registry. J Am Coll Cardiol 1994;23:384–389.

    PubMed  CAS  Google Scholar 

  56. Pennell DJ, Mavrogeni SI, Forbat SM, et al. Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol 1995;25:1300–1309.

    Article  PubMed  CAS  Google Scholar 

  57. Vitola JV, Brambatti JC, Caligaris F, et al. Exercise supplementation to dipyridamole prevents hypotension, improves electrocardiogram sensitivity, and increases heart-to-liver activity ratio on Tc-99m sestamibi imaging. J Nucl Cardiol 2001;8:652–659.

    Article  PubMed  CAS  Google Scholar 

  58. Hurwitz GA, Saddy S, O’Donoghue P, et al. The VEX-test for myocardial scintigraphy with thallium-201 and sestamibi: effect on abdominal background activity. J Nucl Med 1995;36:914–920.

    PubMed  CAS  Google Scholar 

  59. Samady H, Wackers FJT, Joska TM, Zaret BL, Jain D. Pharmacologic stress perfusion imaging with adenosine: role of simultaneous low-level treadmill exercise. J Nucl Cardiol 2002;9:188–196.

    Article  PubMed  Google Scholar 

  60. Thomas GS, Miyamoto MI. Should simultaneous exercise become the standard for adenosine myocardial perfusion imaging? Am J Cardiol 2004;94(suppl):3D–11D.

    Article  PubMed  Google Scholar 

  61. Zhao G, Linke A, Xu X, et al. Comparative profile of vasodilation by CVT-3146, a novel A2a receptor agonist, and adenosine in conscious dogs. J Pharmacol Exp Ther 2003;307:182–189.

    Article  PubMed  CAS  Google Scholar 

  62. Hendel RC, Mahmarian JJ, Cerqueira MD, et al. Pharmacological stress SPECT myocardial perfusion imaging with a selective A2a agonist: results of a pilot study comparing adenosine with CVT-3146. Circulation 2003;108(suppl IV):636.

    Google Scholar 

  63. Udelson JE, Heller GV, Wackers FJ, et al. Randomised, controlled dose-ranging study of the selective adenosine A2A receptor agonist binodenoson for pharmacological stress as an adjunct to myocardial perfusion imaging. Circulation 2004;109:457–464.

    Article  PubMed  CAS  Google Scholar 

  64. Dubois-Randé JL, Merlet P, Duval-Moulin AM, et al. Coronary vasodilating action of dobutamine in patients with idiopathic dilated cardiomyopathy. Am Heart J 1993;125:1329–1336.

    Article  PubMed  Google Scholar 

  65. Germano G, Kiat H, Kavanagh PB, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–2147.

    PubMed  CAS  Google Scholar 

  66. He ZX, Cwalg E, Preslar JS, Mahmarian JJ, Verani MS. Accuracy of left ventricular ejection fraction determined by gated myocardial perfusion SPECT with Tl-201 and Tc-99m sestamibi: comparison with first-pass radionuclide angiography. J Nucl Cardiol 1999;6:412–417.

    Article  PubMed  CAS  Google Scholar 

  67. Nichols K, Lefkowitz D, Faber T, et al. Echocardiographic validation of gated SPECT ventricular function measurements. J Nucl Med 2000;41:1308–1314.

    PubMed  CAS  Google Scholar 

  68. Bax JJ, Lamb H, Dibbets P, et al. Comparison of gated single-photon emission computed tomography with magnetic resonance imaging for evaluation of left ventricular function in ischemic cardiomyopathy. Am J Cardiol 2000;86:1299–1305.

    Article  PubMed  CAS  Google Scholar 

  69. De Bono D. Investigation and management of stable angina: revised guidelines 1998. Heart 1999;81:546–555.

    PubMed  Google Scholar 

  70. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging. 2003. Available at: http://www.asnc.org.

    Google Scholar 

  71. Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997;29:69–77.

    Article  PubMed  CAS  Google Scholar 

  72. Underwood R, Godman B, Salyani S, et al. Economics of myocardial perfusion imaging in Europe — the EMPIRE Study. Eur Heart J 1999;20:157–166.

    Article  PubMed  CAS  Google Scholar 

  73. Shaw LJ, Hachamovitch R, Berman D, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterisation ischemia. J Am Coll Cardiol 1999;33:661–669.

    Article  PubMed  CAS  Google Scholar 

  74. Schinkel AF, Elhendy A, Biagini E, et al. Prognostic stratification using dobutamine stress 99mmTctetrofosmin myocardial perfusion SPECT in elderly patients unable to perform exercise testing. J Nucl Med 2005;46:12–18.

    PubMed  Google Scholar 

  75. National Institute for Clinical Excellence (NICE). Myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Technology appraisal guidance 73, November 2003. Available at: www.nice.org.uk/TA073guidance.

    Google Scholar 

  76. Giri S, Shaw LJ, Murthy DR, et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 2002;105:32–40.

    Article  PubMed  Google Scholar 

  77. Miller DD, Donohue TJ, Younis LT, et al. Correlation of pharmacological 99m-Tc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation 1994;89:2150–2160.

    PubMed  CAS  Google Scholar 

  78. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici P. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1994;330:1782–1788.

    Article  PubMed  CAS  Google Scholar 

  79. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of coronary stenosis? N Engl J Med 1984;310:819–824.

    Article  PubMed  CAS  Google Scholar 

  80. Heller LI, Cates C, Popma J, et al. and the FACTS Study Group. Intracoronary Doppler assessment of moderate coronary artery disease. Comparison with 201Tl imaging and coronary angiography. Circulation 1997;96:484–490.

    PubMed  CAS  Google Scholar 

  81. Zeiher AM, Drexler H, Wollschlager H, Just H. Endothelial dysfunction of the coronary microvasculature is associated w ith coronary b lood fl ow r egulation i n patients with early atherosclerosis. Circulation 1991;84:1984–1992.

    PubMed  CAS  Google Scholar 

  82. Reddy KG, Nair RN, Sheehan HM, Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol 1994;23:833–843.

    PubMed  CAS  Google Scholar 

  83. Picano E, Mathias W Jr, Pingitore A, Bigi R, Previtali M. Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicentre study: Echo Dobutamine International Cooperative Study Group. Lancet 1994;344:1190–1192.

    Article  PubMed  CAS  Google Scholar 

  84. Mertes H, Sawada SG, Ryan T, et al. Symptoms, adverse effects, and complications associated with dobutamine stress echocardiography: experience in 1118 patients. Circulation 1993;88:15–19.

    PubMed  CAS  Google Scholar 

  85. Pennell DJ, Underwood SR, Manzara CC, et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992;70:34–40.

    Article  PubMed  CAS  Google Scholar 

  86. Baer FM, Voth E, Theissen P, Schicha H, Sechtem U. Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J 1994;15:218–225.

    PubMed  CAS  Google Scholar 

  87. van Rugge FP, van der Wall EE, de Roos A, Bruschke AV. Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol 1993;22:431–439.

    PubMed  Google Scholar 

  88. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia induced wall-motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999;99:763–770.

    PubMed  CAS  Google Scholar 

  89. Kuijpers D, Ho KY, van Dijkmann PRM, Vliegenthart R, Oudkerk M. Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 2003;107:1592–1597.

    Article  PubMed  Google Scholar 

  90. Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990;174:757–762.

    PubMed  CAS  Google Scholar 

  91. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991;18:959–965.

    Article  PubMed  CAS  Google Scholar 

  92. Schaefer S, van Tyen R, Saloner D. Evaluation of myocardial perfusion abnormalities with gadoliniumenhanced snapshot MR imaging in humans. Work in progress. Radiology 1992;185:795–801.

    PubMed  CAS  Google Scholar 

  93. Wilke N, Simm C, Zhang J, et al. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 1993;29:485–497.

    PubMed  CAS  Google Scholar 

  94. Wilke N, Kroll K, Merkle H, et al. Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA. J Magn Reson Imaging 1995;5:227–237.

    PubMed  CAS  Google Scholar 

  95. Eichenberger AC, Schuiki E, Kochli VD, Amann FW, McKinnon GC, von Schulthess GK. Ischemic heart disease: assessment with gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imaging 1994;4:425–431.

    PubMed  CAS  Google Scholar 

  96. Saeed M, Wendland MF, Sakuma H, et al. Coronary artery stenosis: detection with contrast-enhanced MR imaging in dogs. Radiology 1995;196:79–84.

    PubMed  CAS  Google Scholar 

  97. Walsh EG, Doyle M, Lawson MA, Blackwell GG, Pohost GM. Multislice first-pass myocardial perfusion imaging on a conventional clinical scanner. Magn Reson Med 1995;34:39–47.

    PubMed  CAS  Google Scholar 

  98. Matheijssen NA, Louwerenburg HW, van Rugge FP, et al. Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel coronary artery disease: assessment by quantitative model fitting. Magn Reson Med 1996;35:221–228.

    PubMed  CAS  Google Scholar 

  99. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997;204:373–384.

    PubMed  CAS  Google Scholar 

  100. Cullen JH, Horsfield MA, Reek CR, Cherryman GR, Barnett DB, Samani NJ. A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 1999;33:1386–1394.

    Article  PubMed  CAS  Google Scholar 

  101. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000;101:1379–1383.

    PubMed  CAS  Google Scholar 

  102. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001;103:2230–2235.

    PubMed  CAS  Google Scholar 

  103. Nagel E, Klein C, Paetsch I, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003;108:432–437.

    Article  PubMed  Google Scholar 

  104. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 2002;346:1948–1953.

    Article  PubMed  Google Scholar 

  105. Senior R, Basu S, Khattar R, Lahiri A. Independent prognostic value of the extent and severity of systolic wall thickening abnormality at infarct site after thrombolytic therapy. Am Heart J 1998;135:1093–1098.

    Article  PubMed  CAS  Google Scholar 

  106. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association [review]. Circulation 2002;105:539–542.

    Article  PubMed  Google Scholar 

  107. Kober L, Torp-Pedersen C, Carlsen J, Videbaek R, Egeblad H. An echocardiographic method for selecting high risk patients shortly after acute myocardial infarction, for inclusion in multi-centre studies (as used in the TRACE study). TRAndolapril Cardiac Evaluation. Eur Heart J 1994;15:1616–1620.

    PubMed  CAS  Google Scholar 

  108. Kjoller E, Kober L, Jorgensen S, Torp-Pedersen C. Longterm prognostic importance of hyperkinesia following acute myocardial infarction. TRACE Study Group. TRAndolapril Cardiac Evaluation. Am J Cardiol 1999;83:655–659.

    Article  PubMed  CAS  Google Scholar 

  109. Tsoukas A, Ikonomidis I, Cokkinos P, Nihoyannopoulos P. Significance of persistent left ventricular dysfunction during recovery after dobutamine stress echocardiography. J Am Coll Cardiol 1997;30:621–626.

    Article  PubMed  CAS  Google Scholar 

  110. Senior R, Lahiri A. Enhanced detection of myocardial ischemia by stress dobutamine echocardiography utilizing the “biphasic” response of wall thickening during low and high dose dobutamine infusion. J Am Coll Cardiol 1995;26:26–32.

    Article  PubMed  CAS  Google Scholar 

  111. Soman P, Lahiri A, Senior R. Vasodilator stress induces infrequent wall thickening abnormalities compared to perfusion defects in mild to moderate coronary artery disease: implications for the choice of imaging modality with vasodilator stress. Echocardiography 2004;21:307–312.

    Article  PubMed  Google Scholar 

  112. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? New Engl J Med 1984;310:819–824.

    Article  PubMed  CAS  Google Scholar 

  113. Marwick TH. Stress echocardiography. Heart 2003;89:113–118.

    Article  PubMed  Google Scholar 

  114. Geleijnse ML, Elhendy A. Can stress echocardiography compete with perfusion scintigraphy in the detection of coronary artery disease and cardiac risk assessment? Eur J Echocardiogr 2000;1:12–21.

    Article  PubMed  CAS  Google Scholar 

  115. Schinkel AFL, Bax JJ, Geleijnse ML, et al. Noninvasive evaluation of ischaemic heart disease: myocardial perfusion imaging or stress echocardiography? Eur Heart J 2003;24:789–800.

    Article  PubMed  CAS  Google Scholar 

  116. Ho Y-L, Wu C-C, Lin L-C, et al. Assessment of coronary artery disease in women by dobutamine stress echocardiography: comparison with stress thallium-201 single-photon emission computed tomography and exercise electrocardiography. Am Heart J 1998;135:655–662.

    Article  PubMed  CAS  Google Scholar 

  117. Takeuchi M, Sonoda S, Miura Y, Kuroiwa A. Comparative diagnostic value of dobutamine stress echocardiography and stress thallium-201 single-photon emission computed tomography for detecting coronary artery disease in women. Coron Artery Dis 1996;7:831–835.

    Article  PubMed  CAS  Google Scholar 

  118. Elhendy A, von Domburg RT, Bax JJ, et al. Non-invasive diagnosis of coronary artery stenosis in women with limited exercise capacity: comparison of dobutamine stress echocardiography and Tc-99m sestamibi singlephoton emission CT. Chest 1998;114:1097–1104.

    PubMed  CAS  Google Scholar 

  119. Elhendy A, Geleijnse ML, van Domburg RT, et al. Comparison of dobutamine stress echocardiography and technetium-99m sestamibi single-photon emission tomography for the diagnosis of coronary artery disease in hypertensive patients with and without left ventricular hypertrophy. Eur J Nucl Med 1998;25:69–78.

    Article  PubMed  CAS  Google Scholar 

  120. Fragasso G, Lu C, Dabrowski P, et al. Comparison of stress/rest myocardial perfusion tomography, dipyridamole and dobutamine stress echocardiography for the detection of coronary disease in hypertensive patients with chest pain and positive exercise test. J Am Coll Cardiol 1999;34:441–447.

    Article  PubMed  CAS  Google Scholar 

  121. O’Keefe JH Jr, Barnhart CS, Bateman TM. Comparison of stress echocardiography and stress myocardial perfusion scintigraphy for diagnosing coronary artery disease and assessing its severity. Am J Cardiol 1995;75:25D–34D.

    Article  PubMed  Google Scholar 

  122. Kaul S, Force T. Assessment of myocardial perfusion with contrast two dimensional echocardiography. Am J Cardiol 1992;69:69–46H.

    Article  Google Scholar 

  123. Linka AZ, Sklenar J, Wei K, et al. Spatial distribution of microbubble velocity and concentration within the myocardium insight into transmural distribution of myocardial blood flow and volume. Circulation 1998;98:1912–1920.

    PubMed  CAS  Google Scholar 

  124. Wei K, Jayaweera AR, Firoozan, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a continuous infusion. Circulation 1998;97:473–483.

    PubMed  CAS  Google Scholar 

  125. Wei K, Le E, Bin JP, et al. Mechanism of reversible 99mTcsestamibi perfusion defects during pharmacologically induced coronary vasodilation. Am J Physiol 2001;280:H1896–1904.

    CAS  Google Scholar 

  126. Jayaweera AR, Wei K, Coggins M, et al. Role of capillaries in determining CBF reserve: new insights using myocardial contrast echocardiography. Am J Physiol 1999;277:H2363–2372.

    PubMed  CAS  Google Scholar 

  127. Porter TR, Xie F, Silver M, et al. Real-time perfusion imaging with low mechanical index pulse inversion Doppler imaging. J Am Coll Cardiol 2001;37:748–753.

    Article  PubMed  CAS  Google Scholar 

  128. Shimoni S, Zoghbi WA, Xie F, et al. Real-time assessment of myocardial perfusion and wall motion during bicycle and treadmill exercise echocardiography: comparison with single photon emission computed tomography. J Am Coll Cardiol 2001;37:741–747.

    Article  PubMed  CAS  Google Scholar 

  129. Senior R, Lepper W, Pasquet A, et al. Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc-SPECT. Am Heart J 2004;147:1100–1105.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Reyes, E., Bunce, N., Senior, R., Anagnostopoulos, C.D. (2006). Diagnosis of Coronary Artery Disease. In: Anagnostopoulos, C.D., Nihoyannopoulos, P., Bax, J.J., van der Wall, E. (eds) Noninvasive Imaging of Myocardial Ischemia. Springer, London. https://doi.org/10.1007/1-84628-156-3_10

Download citation

  • DOI: https://doi.org/10.1007/1-84628-156-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-027-6

  • Online ISBN: 978-1-84628-156-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics