Skip to main content

Molecular Response to Osmotic Shock

  • Chapter
Systems Biology

Part of the book series: Cell Engineering ((CEEN,volume 5))

Abstract

The cellular responses of cultured mammalian cells and non-mammalian organisms to changes in osmolarity are discussed. A number of common themes including activation of protein kinase cascades can be observed in a diverse group of organisms. A combination of physiological and transcriptional studies has been performed to identify regulatory factors and proteins that play a causal role in the cellular responses to osmotic changes. These factors may serve as targets for cellular engineering strategies to improve the productivity of cultured mammalian cells, particularly in response to osmotic shock

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hohmann S., (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66(2), 300–372.

    Article  PubMed  CAS  Google Scholar 

  2. Westfall P.J., Ballon D.R. & Thorner J., (2004) When the stress of your environment makes you go HOG Wild. Science. 306(5701), 1511–1512.

    Article  PubMed  CAS  Google Scholar 

  3. Klipp E., Nordlander B., Kruger R., Gennemark P. & Hohmann S., (2005) Integrative model of the response of yeast to osmotic shock. 23(8), 975–982.

    Google Scholar 

  4. Reiser V., Raitt D.C. & Saito H., (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J. Cell Biol. 161(6), 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  5. Raitt D.C., Posas F. & Saito H., (2000) Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. the EMBO Journal. 19(17), 4623–4631.

    Article  PubMed  CAS  Google Scholar 

  6. Reiser V., Salah S.M. & Ammerer G., (2000) Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nature Cell Biology. 2(9), 620–627.

    Article  PubMed  CAS  Google Scholar 

  7. Uhlik M.T., Abell A.N., Johnson N.L., Sun W., Cuevas B.D., Lobel-Rice K.E., Horne E.A., Dell’Acqua M.L. & Johnson G.L., (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nature Cell Biology. 5(12), 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  8. Reiser V., Ruis H. & Ammerer G., (1999) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 10(4), 1147–1161.

    PubMed  CAS  Google Scholar 

  9. Rep M., Krantz M., Thevelein J.M. & Hohmann S., (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275(12), 8290–8300.

    Article  PubMed  CAS  Google Scholar 

  10. Nadal E.d., Casadome L. & Posas F., (2003) Targeting the MEF2-like transcription factor smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol. Cell. Biol. 23(1), 229–237.

    Article  PubMed  CAS  Google Scholar 

  11. Causton H.C., Ren B., Koh S.S., Harbison C.T., Kanin E., Jennings E.G., Lee T.I., True H.L., Lander E.S. & Young R.A., (2001) Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell. 12(2), 323–337.

    PubMed  CAS  Google Scholar 

  12. Chinnusamy V., Schumaker K. & Zhu J.-K., (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55(395), 225–236.

    Article  PubMed  CAS  Google Scholar 

  13. Boudsocq M. and Lauriere C., (2005) Osmotic signaling in plants. multiple pathways mediated by emerging kinase families. Plant Physiol. 138(3), 1185–1194.

    Article  PubMed  CAS  Google Scholar 

  14. Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T. & Shinozaki K., (1999) A Transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 11(9), 1743–1754.

    Article  PubMed  CAS  Google Scholar 

  15. Tamura T., Hara K., Yamaguchi Y., Koizumi N. & Sano H., (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol. 131(2), 454–462.

    Article  PubMed  CAS  Google Scholar 

  16. Kiegle E., Moore C.A., Haseloff J., Tester M.A. & Knight M.R., (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. The Plant Journal. 23(2), 267–278.

    Article  PubMed  CAS  Google Scholar 

  17. Knight H., Trewavas A.J. & Knight M.R., (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal. 12(5), 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  18. Kreps J.A., Wu Y., Chang H.-S., Zhu T., Wang X. & Harper J.F., (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130(4), 2129–2141.

    Article  PubMed  CAS  Google Scholar 

  19. Guo Y., Qiu Q.-S., Quintero F.J., Pardo J.M., Ohta M., Zhang C., Schumaker K.S. & Zhu J.-K., (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and c-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell. 16(2), 435–449.

    Article  PubMed  CAS  Google Scholar 

  20. Guo Y., Halfter U., Ishitani M. & Zhu J.-K., (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell. 13(6), 1383–1400.

    Article  PubMed  CAS  Google Scholar 

  21. Leung J. and Giraudat J., (1998) Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology. 49(1), 199–222.

    Article  PubMed  CAS  Google Scholar 

  22. Riera M., Valon C., Fenzi F., Giraudat J. & Leung J., (2005) The genetics of adaptive responses to drought stress: abscisic acid-dependent and abscisic acid-independent signalling components. Physiol. Plant. 123(2), 111–119.

    Article  CAS  Google Scholar 

  23. Frandsen G., Müller-Uri F., Nielsen M., Mundy J. & Skriver K., (1996) Novel plant Ca2+-binding protein expressed in response to abscisic acid and osmotic stress. J. Biol. Chem. 271(1), 343–348.

    Article  PubMed  CAS  Google Scholar 

  24. Covic L., Silva N.F. & Lew R.R., (1999) Functional characterization of ARAKIN (ATMEKK1): a possible mediator in an osmotic stress response pathway in higher plants. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 1451(2–3), 242–254.

    Article  CAS  Google Scholar 

  25. Hasegawa P.M., Bressan R.A., Zhu J.-K. & Bohnert H.J., (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology. 51(1), 463–499.

    Article  PubMed  CAS  Google Scholar 

  26. Forst S., Delgado J. & Inouye M., (1989) Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. PNAS. 86(16), 6052–6056.

    Article  PubMed  CAS  Google Scholar 

  27. Begic S. and Worobec E.A., (2006) Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH. Microbiology. 152(2), 485–491.

    Article  PubMed  CAS  Google Scholar 

  28. Nikaido H., (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67(4), 593–656.

    Article  PubMed  CAS  Google Scholar 

  29. Culham D.E., Lu A., Jishage M., Krogfelt K.A., Ishihama A. & Wood J.M., (2001) The osmotic stress response and virulence in pyelonephritis isolates of Escherichia coli: contributions of RpoS, ProP, ProU and other systems. Microbiology. 147(6), 1657–1670.

    PubMed  CAS  Google Scholar 

  30. Ly A., Henderson J., Lu A., Culham D.E. & Wood J.M., (2004) Osmoregulatory systems of Escherichia coli: Identification of betaine-carnitine-choline transporter family member BetU and Distributions of betU and trkG among pathogenic and nonpathogenic isolates. J. Bacteriol. 186(2), 296–306.

    Article  PubMed  CAS  Google Scholar 

  31. Booth I.R.L.P., (1999) Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Current Opinion in Microbiology. 2(2), 166–169.

    Article  PubMed  CAS  Google Scholar 

  32. Vaknin A. and Berg H.C., (2006) Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli. Proc. Natl. Acad. Sci. 103(3), 592–596.

    Article  PubMed  CAS  Google Scholar 

  33. Sukharev S., (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys. J. 83(1), 290–298.

    Article  PubMed  CAS  Google Scholar 

  34. Blount P., Schroeder M.J. & Kung C., (1997) Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J. Biol. Chem. 272(51), 32150–32157.

    Article  PubMed  CAS  Google Scholar 

  35. Wood J.M., (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63(1), 230–262.

    PubMed  CAS  Google Scholar 

  36. Evans D.H., Piermarini P.M. & Choe K.P., (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85(1), 97–177.

    Article  PubMed  CAS  Google Scholar 

  37. Fiol D.F. and Kultz D., (2005) Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells. Proc. Natl. Acad. Sci. 102(3), 927–932.

    Article  PubMed  CAS  Google Scholar 

  38. Kultz D. and Avila K., (2001) Mitogen-activated protein kinases are in vivo transducers of osmosensory signals in fish gill cells. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 129(4), 821–829.

    Article  CAS  Google Scholar 

  39. Musch M.W., Koomoa D.-L.T. & Goldstein L., (2004) Hypotonicity-induced exocytosis of the skate anion exchanger skAE1: Role of lipid raft regions. J. Biol. Chem. 279(38), 39447–39453.

    Article  PubMed  CAS  Google Scholar 

  40. Dana-Lynn T., Koomoa M.W.M., & Goldstein, L., (2005) Osmotic stress stimulates the organic osmolyte channel in Xenopus laevis oocytes expressing skate Raja erinacea AE1. Journal of Experimental Zoology Part A: Comparative Experimental Biology. 303A(4), 319–322.

    Article  CAS  Google Scholar 

  41. Pelech S.L. and Sanghera J.S., (1992) Mitogen-activated protein kinases: versatile transducers for cell signaling. Trends Biochem. Sci. 17, 233–238.

    PubMed  CAS  Google Scholar 

  42. Hibi M., Lin A., Smeal T., Minden A. & Karin M., (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes & Devel. 7, 2135–2148.

    CAS  Google Scholar 

  43. Derijard B., Hibi M., Wu I.-H., Barrett T., Su B., Deng T., Karin M. & Davis R.J., (1994) JNK1: A protein kinase stimulated by UV Light and Ha-Ras That binds and phosphorylates the c-Jun activation domain. Cell. 76, 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  44. Kyriakis J.M., Banerjee P., Nikolakaki E., Dai T., Rubie E.A., Ahmad M.F., Avruch J. & Woodgett J.R., (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 369(6476), 156–60.

    Article  PubMed  CAS  Google Scholar 

  45. Nishida E. and Gotoah Y., (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131.

    Article  PubMed  CAS  Google Scholar 

  46. Davis R.J., (1993) The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553–14556.

    PubMed  CAS  Google Scholar 

  47. Minden A., Lin A., Smeal T., Derijard B., Cobb M., Davis R. & Karin M., (1994) c-Jun N-terminal phosphorylation correlates with activation of the JNK Subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol. Cell. Biol. 14, 6683–6688.

    PubMed  CAS  Google Scholar 

  48. Han J., Lee J.-D., Bibbs L. & Ulevitch J., (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 265, 808–811.

    Article  PubMed  CAS  Google Scholar 

  49. Crews C.M., Alessandrini A. & Erikson R.L., (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK product. Science. 258, 478–480.

    Article  PubMed  CAS  Google Scholar 

  50. Raingeaud J., Whitmarsh A.J., Barrett T., Derijard B. & Davis R.J., (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16(3), 1247–55.

    PubMed  CAS  Google Scholar 

  51. Derijard B., Raingeaud J., Barrett T., Wu I.-H., Han J., Ulevitch R.J. & Davis R.J., (1995) Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 267, 682–684.

    Article  PubMed  CAS  Google Scholar 

  52. Lin A., Minden A., Martinetto H., Claret F.-X., Lange-Carter C., Mercurio F., Johnson G.L. & Karin M., (1995) identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science. 268, 286–290.

    Article  PubMed  CAS  Google Scholar 

  53. Sanchez I., Hughes R.T., Mayer B.J., Yee K., Woodgett J.R., Avruch J., Kyriakis J.M. & Zon L.I., (1994) Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature. 372, 794–800.

    PubMed  CAS  Google Scholar 

  54. Matsuda S., Kawasaki H., Moriguchi T., Gotoh Y. & Nishida E., (1995) Activation of protein kinase cascades by osmotic shock. J. Biol. Chem. 270, 12781–12786.

    Article  PubMed  CAS  Google Scholar 

  55. Rana A., Gallo K., Godowski P., Hirai S., Ohno S., Zon L., Kyriakis J.M. & Avruch J., (1996) The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J. Biol. Chem. 271, 19025–19028.

    Article  PubMed  CAS  Google Scholar 

  56. Tibbles L.A., Ing Y.L., Kiefer F., Chan J., Iscove N., Woodgett J.R. & Lassam N.J., (1996) MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J. 15(24), 7026–35.

    PubMed  CAS  Google Scholar 

  57. Zanke B.W., Rubie E.A., Winnett E., Chan J., Randall S., Parsons M., Boudreau K., McInnis M., Yan M., Templeton D.J. & Woodgett J.R., (1996) Mammalian mitogen-activated protein kinase pathways are regulated through formation of specific kinase-activator complexes. J. Biol. Chem. 271(47), 29876–81.

    Article  PubMed  CAS  Google Scholar 

  58. Galcheva-Gargova Z., Derijard B., Wu I.-H. & Davis R., (1994) An osmosensing signal transduction pathway in mammalian cells. Science. 265, 806–808.

    Article  PubMed  CAS  Google Scholar 

  59. Rosette C. and Karin M., (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science. 274, 1194–1197.

    Article  PubMed  CAS  Google Scholar 

  60. Qin S., Minami Y., Hibi M., Kurosaki T. & Yamamura H., (1997) Syk-dependent and -independent signaling cascades in B cells elicited by osmotic and oxidative stress. J. Biol. Chem. 272(4), 2098–103.

    Article  PubMed  CAS  Google Scholar 

  61. Tissiàeres A., Mitchell H.K. & Tracy U.M., (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. Journal of molecular biology. 84(3), 389–98.

    Article  CAS  Google Scholar 

  62. Nover L. and Scharf K.D., in Heat Shock Response, L. Nover, Editor. 1991, CRC Press: Boca Raton, Fl. p. 41–128.

    Google Scholar 

  63. Lindquist S. and Craig E.A., (1988) The heat-shock proteins. Ann. Rev. Genet. 22, 631–677.

    Article  PubMed  CAS  Google Scholar 

  64. Kojima R., Randall J., Brenner B.M. & Gullans S.R., (1996) Osmotic stress protein 94 (Osp94): A new member of the Hsp110/SSE gene subfamily. J. Biol. Chem. 271, 12327–12332.

    Article  PubMed  CAS  Google Scholar 

  65. Gething M.J. and Sambrook J., (1992) Protein folding in the cell. Nature. 355, 33–44.

    Article  PubMed  CAS  Google Scholar 

  66. Becker J. and Craig E.A., (1994) Heat-shock proteins as molecular chaperones. Eur. J. Biochem. 219, 11–23.

    Article  PubMed  CAS  Google Scholar 

  67. Bole D.G., Hendershot L.M. & Kearny J.F., (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102, 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  68. Dorner A.J., Wasley L.C. & Kaufman R.J., (1989) Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264(34), 20602–7.

    PubMed  CAS  Google Scholar 

  69. Dorner A.J., Wasley L.C., Raney P., Haugejorden S., Green M. & Kaufman R.J., (1990) The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J. Biol. Chem. 265(35), 22029–34.

    PubMed  CAS  Google Scholar 

  70. Morris J.A., Dorner A.J., Edwards C.A., Hendershot L.M. & Kaufman R.J., (1997) Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J. Biol. Chem. 272(7), 4327–34.

    Article  PubMed  CAS  Google Scholar 

  71. Li L.-J., Li X., Ferrario A., Rucker N., Liu E.S., Wong S., Gomer C.J. & Lee A.S., (1992) Establishment of a Chinese hamster ovary cell line that expresses grp78 antisense transcripts and suppresses A23187 induction of both GRP78 and GRP94. J. Cell. Physiol. 153, 575–582.

    Article  PubMed  CAS  Google Scholar 

  72. Dorner A.J., Krane M.G. & Kaufman R.J., (1988) Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO Cells. Mol. Cell. Biol. 8(10), 4063–4070.

    PubMed  CAS  Google Scholar 

  73. Dorner A.J., Wasley L.C. & Kaufman R.J., (1990) Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels. PNAS. 87(19), 7429–32.

    Article  PubMed  CAS  Google Scholar 

  74. Kitchin K. and Flickinger M.C., (1995) Alteration of hybridoma viability and antibody secretion in transfectomas with inducible overexpression of protein disulfide isomerase. Biotechnol Prog. 11, 565–574.

    Article  PubMed  CAS  Google Scholar 

  75. Lambert N. and Merten O.-W., (1997) Effect of serum-free and serum-containing medium on cellular levels of ER-based proteins in various mouse hybridoma cell lines. Biotechnol. Bioeng. 54(2), 165–180.

    Article  CAS  PubMed  Google Scholar 

  76. Skowronek M.H., Hendershot L.M. & Hass I.G., (1998) The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP. Proceedings of the National Academy of Science, USA. 95, 1574–1578.

    Article  CAS  Google Scholar 

  77. Ozturk S.S. and Palsson B.O., (1991) Effect of medium osmolarity on hybridoma growth, metabolism, and antibody production. Biotech. Bioeng. 37, 989–993.

    Article  CAS  Google Scholar 

  78. Kim N.S. and Lee G.M., (2002) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J. Biotechnol. 95, 237–248.

    Article  PubMed  CAS  Google Scholar 

  79. Wu M.-H., Dimopoulos G., Mantalaris A. & Varley J., (2004) The effect of hyperosmotic pressure on antibody production and gene expression in the GS-NS0 cell line. Biotechnology and Applied Biochemistry. 40, 41–46.

    Article  PubMed  CAS  Google Scholar 

  80. Lee G.M. and Park S.Y., (1995) Enhanced specific antibody productivity of hybridomas resulting from hyperosmotic stress is cell line-specific. Biotechnol. Lett. 17(2), 145–150.

    Article  CAS  Google Scholar 

  81. Ryu J.S., Kim T.K., Chung J.Y. & Lee G.M., (2000) Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant Chinese hamster ovary cell cultures differs among cell lines. Biotechnol Bioeng. 70(2), 167–75.

    Article  PubMed  CAS  Google Scholar 

  82. Lee M.S., Kim K.W., Kim Y.H. & Lee G.M., (2003) Proteome analysis of antibody-expressing CHO cells in response to hyperosmotic pressure. Biotechnol Prog. 19(6), 1734–1741.

    Article  PubMed  CAS  Google Scholar 

  83. Oyaas K., Ellingsen T.E., Dyrset N. & Levine D.W., (1994) Hyperosmotic hybridoma cell cultures: Increased monoclonal antibody production with addition of glycine betaine. Biotech. Bioeng. 44, 991–998.

    Article  CAS  Google Scholar 

  84. Oh S.K.W., Chua F.K.F. & Choo A.B.H., (1995) Intracellular responses of productive hybridomas subjected to high osmotic pressure. Biotech. Bioeng. 46, 525–535.

    Article  CAS  Google Scholar 

  85. Shen D. and Sharfstein S.T., (2006) Genome-wide analysis of the transcriptional response of murine hybridomas to osmotic shock. Biotechnol. Bioeng. 93(1), 132–145.

    Article  PubMed  CAS  Google Scholar 

  86. Reddy S. and Miller W.M., (1994) Effects of abrupt and gradual osmotic-stress on antibody-production and content in hybridoma cells that differ in production kinetics. Biotechnol Prog. 10(2), 165–173.

    Article  PubMed  CAS  Google Scholar 

  87. Sun Z., Zhou R., Liang S., McNeeley K.M. & Sharfstein S.T., (2004) Hyperosmotic stress in murine hybridoma cells: effects on antibody transcription, translation, posttranslational processing, and the cell cycle. Biotechnol Prog. 20(2), 576–89.

    Article  PubMed  CAS  Google Scholar 

  88. deZengotita V.M., Schmelzer A.E. & Miller W.M., (2002) Characterization of hybridoma cell responses to elevated pCO(2) and osmolality: intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng. 77(4), 369–80.

    Article  PubMed  CAS  Google Scholar 

  89. Oh S.K.W., Vig P., Chua F., Teo W.K. & Yap M.G.S., (1993) Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotechnol. Bioeng. 42, 601–610.

    Article  CAS  PubMed  Google Scholar 

  90. Wurm F.M., (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 22(11), 1393–8.

    Article  PubMed  CAS  Google Scholar 

  91. Lee M.S. and Lee G.M., (2000) Hyperosmotic pressure enhances immunoglobulin transcription rates and secretion rates of KR12H-2 transfectoma. Biotechnol Bioeng. 68(3), 260–8.

    Article  PubMed  CAS  Google Scholar 

  92. Khaware R.K., Koul A. & Prasad R., (1995) High membrane fluidity is related to NaCl stress in Candida membranefaciens. Biochemistry and Molecular Biology International. 35(4), 875–880.

    PubMed  CAS  Google Scholar 

  93. Graven K.K., Troxler R.F., Kornfeld H., Panchenko M.V. & Farber H.W., (1994) Regulation of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia. J. Biol. Chem. 269, 24446–24453.

    PubMed  CAS  Google Scholar 

  94. Mansur N.R., Meyer-Siegler K., Wurzer J.C. & Sirover M.A., (1993) Cell cycle regulation of the glyceraldehyde-3-phophate dehydrogenase/uracil DNA glycosylase gene in normal human cells. Nucleic Acids Res. 21, 993–998.

    Article  PubMed  CAS  Google Scholar 

  95. McNulty S.E. and Toscano W.A., (1995) Transcriptional regulation of glyceraldehyde-3-phosphate dehydrogenase by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem. Biophys. Res. Commun. 212, 165–171.

    Article  PubMed  CAS  Google Scholar 

  96. Ryu J.S., Lee M.S. & Lee G.M., (2001) Effects of cloned gene dosage on the response of recombinant CHO cells to hyperosmotic pressure in regard to cell growth and antibody production. Biotechnol Prog. 17(6), 993–999.

    Article  PubMed  CAS  Google Scholar 

  97. Cherlet M. and Marc A., (1999) Hybridoma cell behaviour in continuous culture under hyperosmotic stress. Cytotechnology. 29, 71–84.

    Article  PubMed  CAS  Google Scholar 

  98. Blomberg A., (1997) Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae. Electrophoresis. 18(8), 1429–1440.

    Article  PubMed  CAS  Google Scholar 

  99. Masuda K., Shima H., Watanabe M. & Kikuchi K., (2001) MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J. Biol. Chem. 276(42), 39002–39011.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sharfstein, S.T., Shen, D., Kiehl, T.R., Zhou, R. (2007). Molecular Response to Osmotic Shock. In: Al-Rubeai, M., Fussenegger, M. (eds) Systems Biology. Cell Engineering, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5252-9_7

Download citation

Publish with us

Policies and ethics