Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 137))

Abstract

Natural materials such as bone, tooth, and nacre are nano-composites of proteins and minerals with superior stiffness and toughness. At the most elementary structure level, bio-composites exhibit a generic microstructure consisting of staggered mineral bricks wrapped by soft protein in nanoscale. Why does nature design building blocks of biological materials in this form? Can we reproduce this kind of structure from the structural optimization point of view? We believe that biological materials are designed with simultaneous optimization of stiffness and toughness for maximum structural support and flaw tolerance. With this philosophy, an optimization problem is formulated under the assumption of appropriate material constitutive models and failure criteria. It is shown that, within this optimization framework, the staggered microstructure of biological materials can be successfully reproduced at the nanometer length scale. This study may have at least partially provided an answer to the question whether the nanostructure of biological materials is an optimized structure and what is being optimized. The results suggest that we can draw lessons from the nature in designing nanoscale and hierarchically structured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksay, I.A. and Weiner, S. (2004) Biomaterials. Is this really a field of research?, J. Mater. Chem., 14, 2115–2123.

    Article  Google Scholar 

  • Currey, J.D. (1984) The Mechanical Adaptations of Bone, Princeton University Press, Princeton, NJ, pp. 24–37.

    Google Scholar 

  • Currey, J.D. (1997) Mechanical properties of mother of pearl in tension, Proc. R. Soc. London, Ser. B, 196, 443–463.

    Article  Google Scholar 

  • Fratzl, P., Burgert, I. and Gupta, H.S. (2004) On the role of interface polymers for the mechanics of nature polymeric composites, Phys. Chem. Chem. Phys., 6, 5575–5579.

    Article  Google Scholar 

  • Gao, H., Ji, B., Jager, I.L., Artz, E. and Fratzl, P. (2003) Materials become insensitive to flaws at nanoscale: lessons from nature, Proc. Natl. Acad. Sci. USA, 100, 5597–5600.

    Article  Google Scholar 

  • Jackson, A.P., Vincent, J.F.V. Turner, R.M. (1988) The mechanical design of nacre, Proc. R. Soc. London, Ser. B, 234, 415–440.

    Google Scholar 

  • Jager, I.L. and Fratzl, P. (2000) Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles, Biophys. J., 79, 1737–1746.

    Article  Google Scholar 

  • Ji, B. and Gao, H. (2004) Mechanical properties of nanostructure of biological materials, J. Mech. Phys. Solids, 52, 1963–1990.

    Article  MATH  Google Scholar 

  • Landis, W.J. (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, 16, 533–544.

    Article  Google Scholar 

  • LeeLavanichkul, S. and Cherkaev, A. (2004) Why the grain in tree trunk spirals: A mechanical perspective, Struct. Multidisc. Optimiz., 28, 127–135.

    MathSciNet  Google Scholar 

  • Mening, R., Meyers, M.H., Meyers, M.A. and Vecchio, K.S. (2000) Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shell, Mater. Sci. Eng., A297, 203–211.

    Google Scholar 

  • Smith, B.L., Schaeffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E. and Hansma, P.K. (1999) Molecular mechanistic origin of the toughness of natural adhesive, fibers and composites, Nature, 399, 761–763.

    Article  Google Scholar 

  • Tesch, W., Eidelman, N., Roschger P., Goldenberg, F., Klaushofer, K. and Fratzl, P. (2001) Graded microstructure and mechanical properties of human crown dentin, Calcif. Tissue Int., 69, 147–157.

    Article  Google Scholar 

  • Weiner, S. and Wanger, H.D. (1998) The material bone: Structure-mechanical function relations, Annu. Rev. Mater. Sci., 28, 271–298.

    Article  Google Scholar 

  • Weiner, S., Veis A., Beniash, E., Arad, T., Dilon, J.W., Sabsay, B. and Siddiqui, F. (1999) Pertubular dentin formation: crystal organization and the macromolecular constituent in human teeth, J. Struct. Biol., 126, 27–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Guo, X., Gao, H. (2006). Bio-Inspired Material Design and Optimization. In: Bendsøe, M.P., Olhoff, N., Sigmund, O. (eds) IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Solid Mechanics and Its Applications, vol 137. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4752-5_43

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4752-5_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4729-9

  • Online ISBN: 978-1-4020-4752-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics