Skip to main content

Models: Parameter estimation

  • Reference work entry
Encyclopedia of Hydrology and Lakes

Part of the book series: Encyclopedia of Earth Science ((EESS))

  • 36 Accesses

The problem of model parameter estimation is always associated with a prior problem of model structure choice or identification (e.g. Beck et al., 1990, for their discussion of identifiability in water quality modeling). The methods available depend on whether a linear or non-linear model structure is chosen. The theory of parameter estimation is well developed for linear systems but not for non-linear systems. However, although most hydrological systems are essentially non-linear, much has been achieved using the theories of linear systems analysis.

The essence of the parameter estimation problem is that, given some time series of measurements for the inputs (U) and outputs (Y) of the system of interest, and given some chosen model G(U, θ) where θ are parameters of the model, it is necessary to identify values of θ so as to minimize some criterion of error (index of goodness of fit, objective function or loss function) in reproducing the observations Y. The problem may be extended in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bathurst, J.C., 1986. Physically-based distributed modelling of an upland catchment using the Systéme Hydrologique Européen, J. Hydrol., 87, 79–102.

    Article  Google Scholar 

  • Beck, M.B., 1987. Water quality modelling: A review of the analysis of uncertainty, Water Resour. Res., 23, 1393–1442.

    Google Scholar 

  • Beck, M.B., F.M. Kleiseen and H.S. Wheater, 1990. Identifying flowpaths in models of surface water acidification, Rev. Geophys., 28, 207–230.

    Google Scholar 

  • Beven, K.J., 1993. Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 41–51.

    Article  Google Scholar 

  • Beven, K.J. and A.M. Binley, 1992. The future of distributed models: model calibration and predictive uncertainty, Hydrol. Process., 6, 279–298.

    Google Scholar 

  • Blackie, J. and C. Eeeles, 1985. Lumped catchment models, in M.G. Anderson and T.P. Burt (eds), Hydrological Forecasting, Wiley, Chichester, pp. 311–345.

    Google Scholar 

  • Brooks, R.J., D.N. Lerner and A.M. Tobias, 1994. Determining the range of predictions of a groundwater model which arises from alternative calibrations, Water Resour. Res., 30, 299–3000.

    Article  Google Scholar 

  • Duan, Q., S. Sorooshian and V. Gupta, 1992. Effective and efficient global optimisation for conceptual rainfall–runoff models, Water Resour. Res., 27, 1253–1262.

    Google Scholar 

  • Ibbitt, R. and T. O'Donnell, 1974. Designing conceptual catchment models for automatic fitting methods. IAHS Pubn., 101, 461–475.

    Google Scholar 

  • Keesman, K. and G. van Straten, 1990. Set membership approach to identification and prediction of lake eutrophication, Water Resour. Res., 26, 2643–2652.

    Article  Google Scholar 

  • Nash, J.E. and J.V. Sutcliffe, 1970. River flow forecasting through conceptual models. I. A discussion of principles, J. Hydrol., 10, 282–290.

    Article  Google Scholar 

  • Nelder, J.A. and R. Mead, 1965. A simplex method for function minimisation, Computer J., 7, 308–3.

    Google Scholar 

  • Powell, M., 1970. A survey of methods for unconstrained optimisation, SIAM Rev., 12, 79–97.

    Article  Google Scholar 

  • Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, 1989. Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ritzel, B.J., J.W. Eheart and S. Ranjithan, (1994) Using genetic algorithms to solve a multiple objective groundwater pollution containment problem, Water Resour. Res., 30(5), 1589–1603.

    Article  Google Scholar 

  • Romanowicz, R., K.J. Beven and J. Tawn, 1994. Evaluation of predictive uncertainty in nonlinear models using a Bayesian approach, in V. Barnett and K.F. Turkman (eds), Statistics for the Environment II. Water Related Issues, Wiley, Chichester, pp. 297–317.

    Google Scholar 

  • Rosenbrock, H.H., 1960. An automatic method of finding the greatest or least value of a function, Computer J., 3, 175–184.

    Article  Google Scholar 

  • Sorooshian, S., V.K. Gupta and J.L. Fulton, 1983. Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall–runoff models: influence of calibration data variability and length on model credibility, Water Resour. Res., 19, 251–259.

    Google Scholar 

  • Tarantola, 1987. Inverse Problems.

    Google Scholar 

  • Wang, Q.J., 1991. The genetic algorithm and its application to calibrating conceptual rainfall–runoff models, Water Resour, Res., 27(9), 2467–2472.

    Article  Google Scholar 

  • Yeh, G.T., 1986. Review of parameter identification procedures in groundwater hydrology–the inverse problem, Water Resour. Res., 22, 95–108.

    Google Scholar 

  • Young, P.C., 1984. Recursive Estimation and Time-Series Analysis, Springer-Verlag, Berlin, 300 pp.

    Google Scholar 

  • Young, P.C., 1989. Recursive estimation, forecasting and adaptive control, in C.T. Leondes (ed.), Control and Dynamic Systems, Vol. 30, Academic Press, San Diego, pp. 119–165.

    Google Scholar 

  • Young, P.C. and K.J. Beven, 1994. Data-based mechanistic modelling and the rainfail-flow nonlinearity, Econometrics, 5, 335–363.

    Google Scholar 

Cross references

  • Mathematical models; Modeling of water resources systems; Model predictions: uncertainty; Models: distribution models of catchment hydrology

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this entry

Cite this entry

Beven, K. (1998). Models: Parameter estimation. In: Encyclopedia of Hydrology and Lakes. Encyclopedia of Earth Science. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4497-6_162

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4497-6_162

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-74060-2

  • Online ISBN: 978-1-4020-4497-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics