Skip to main content

Genetics and adaptation in structured populations: sex ratio evolution in Silene vulgaris

  • Chapter
Genetics of Adaptation

Part of the book series: Georgia Genetics Review III ((GEGR,volume 3))

  • 1419 Accesses

Abstract

Theoretical models suggest that population structure can interact with frequency dependent selection to affect fitness in such a way that adaptation is dependent not only on the genotype of an individual and the genotypes with which it co-occurs within populations (demes), but also the distribution of genotypes among populations. A canonical example is the evolution of altruistic behavior, where the costs and benefits of cooperation depend on the local frequency of other altruists, and can vary from one population to another. Here we review research on sex ratio evolution that we have conducted over the past several years on the gynodioecious herb Silene vulgaris in which we combine studies of negative frequency dependent fitness on female phenotypes with studies of the population structure of cytoplasmic genes affecting sex expression. This is presented as a contrast to a hypothetical example of selection on similar genotypes and phenotypes, but in the absence of population structure. Sex ratio evolution in Silene vulgaris provides one of the clearest examples of how selection occurs at multiple levels and how population structure, per se, can influence adaptive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashman, T.-L., 1999. Determinants of sex allocation in a gynodioecious wild strawberry: implications for the evolution of dioecy and sexual dimorphism. J. Evol. Biol. 12: 648–661.

    Google Scholar 

  • Bierzychudek, P., 1981. Pollinator limitation of plant reproductive effort. Am. Nat. 117: 838–840.

    Google Scholar 

  • Charlesworth, D., 1981. A further study of the problem of the maintenance of females in gynodioecious species. Heredity 46: 27–39.

    Google Scholar 

  • Charlesworth, D. & V. Laporte, 1998. The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgaris. Genetics 150: 1267–1282.

    PubMed  Google Scholar 

  • Cosmides, L.M. & J. Tooby, 1981. Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol. 89: 83–129.

    PubMed  Google Scholar 

  • Couvet, D.O. Ronce, & C. Gliddon, 1998. The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. Am. Nat. 152: 59–70.

    Google Scholar 

  • Coyne, J.A., N.H. Barton & M. Turelli, 1997. Perspective: a critique of Sewall Wright’s shifting balance theory of evolution. Evolution 51: 643–671.

    Google Scholar 

  • Coyne, J.A., N.H. Barton & M. Turelli, 2000. Is Wright’s shifting balance process important in evolution? Evolution 54: 306–317.

    PubMed  Google Scholar 

  • de Haan, A.A., H.P. Koelewijn, M.P.J. Hundscheid & J.M.M Van Damme, 1997. The dynamics of gynodioecy in Plantago lanceolata L. II. Mode of action and frequencies of restorer alleles. Genetics 147: 1317–1328.

    PubMed  Google Scholar 

  • Delannay, X., P.H. Gouyon & G. Valdeyron, 1981. Mathematical study of the evolution of gynodioecy with cytoplasmic inheritance under the effect of a nuclear restorer gene. Genetics 99: 169–181.

    Google Scholar 

  • Dulberger, R. & A. Horovitz, 1984. Gender polymorphism in flowers of Silene vulgaris (Moench) Garcke (Caryophyllaceae). Bot. J. Linn. Soc. 89: 101–117.

    Google Scholar 

  • Emery, S.N., 2001. Inbreeding depression and its consequences in Silene vulgaris. Masters Thesis, Vanderbilt University, Nashville, TN, USA.

    Google Scholar 

  • Fisher, R.A., 1958. The Genetical Theory of Natural Selection, 2nd revised edn. Oxford University Press, Oxford.

    Google Scholar 

  • Frank, S.A., 1989. The evolutionary dynamics of cytoplasmic male sterility. Am. Nat. 133: 345–376.

    Google Scholar 

  • Frank, S.A. & C.M. Barr, 2001. Spatial dynamics of cytoplasmic male sterility, pp. 219–243 in Integrating Ecology and Evolution in a Spatial Context, edited by J. Silvertown & J. Antonovics. Blackwell Science, Oxford, UK.

    Google Scholar 

  • Galloway, L.F. & C.B. Fenster, 2000. Population differentiation in an annual legume: local adaptation. Evolution 54: 1173–1181.

    PubMed  Google Scholar 

  • Goodnight, C.J., J.M. Scwartz & L. Stevens, 1992. Contextual analysis of models of group selection, soft selection, hard selection, and the evolution of altruism. Am. Nat. 140: 743–761.

    Google Scholar 

  • Goodnight, C.J. & M.J. Wade, 2000. The ongoing synthesis: a reply to Coyne, Barton, and Turelli. Evolution 54: 317–324.

    PubMed  Google Scholar 

  • Gouyon, P.H. & D. Couvet, 1987, A conflict between two sexes, females and hermaphrodites, pp. 245–260 in The Evolution of Sex and its Consequences, edited by S.C. Stearns. Birkauser Verlag, Basel.

    Google Scholar 

  • Gouyon, P.-H., F. Vichot & J.M.M. Van Damme, 1991. Nuclear-cytoplasmic male sterility: single-point equilibria versus limit cycles. Am. Nat. 137: 198–514.

    Google Scholar 

  • Graff, A., 1999. Population sex structure and reproductive fitness in gynodioecious Sidalaceea malviflora malviflora (Malvaceae). Evolution 53: 1714–1722.

    Google Scholar 

  • Gregorius, H.-R. & M.D. Ross, 1984. Selection with genecytoplasm interactions. I. Maintenance of cytoplasm polymorphisms. Genetics 107: 165–178.

    Google Scholar 

  • Hatcher, M.J., 2000. Persistence of selfish genetic elements: population structure and conflict. Trends Ecol. Evol. 15: 271–277.

    PubMed  Google Scholar 

  • Hurst, L.D., A. Atlan & B.O. Bengtsson, 1996. Genetic conflicts. Q. Rev. Biol. 71: 317–364.

    PubMed  Google Scholar 

  • Jacobs, M.S. & M.J. Wade, 2003. A synthetic review of the theory of gynodioecy. Am. Nat. 161: 837–851.

    PubMed  Google Scholar 

  • Jolls, C.L., 1984. The maintenance of hermaphrodites and females in populations of Silene vulgaris (Moench) Garcke (Caryoplyllaceae). Am. J. Bot. 71: 80.

    Google Scholar 

  • Jolls, C.L. & T.C. Chenier, 1989. Gynodioecy in Silene vulgaris (Caryophyllaceae): progeny success, experimental design, and maternal effects. Am. J. Bot. 76: 1360–1367.

    Google Scholar 

  • Levings, C.S. III., 1993. Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 5: 1285–1290.

    PubMed  Google Scholar 

  • Lewis, D., 1941. Male sterility in natural populations of hermaphroditic plants. New Phytol. 40: 56–63.

    Google Scholar 

  • Lloyd, D.G., 1974. Theoretical sex ratios of dioecious and gynodioecious angiosperms. Heredity 32: 11–31.

    Google Scholar 

  • McCauley, D.E., 1998. The genetic structure of a gynodioecious plant: nuclear and cytoplasmic genes. Evolution 52: 255–260.

    Google Scholar 

  • McCauley, D.E. & M.T. Brock, 1998. Frequency-dependent fitness in Silene vulgaris, a gynodioecious plant. Evolution 52: 30–36.

    Google Scholar 

  • McCauley, D.E., M.S. Olson, S.N. Emery & D.L. Taylor, 2000a. Sex ratio variation in a gynodioecious plant: spatial scale and fitness consequences. Am. Nat. 155: 814–819.

    PubMed  Google Scholar 

  • McCauley, D.E., M.S. Olson & D.R. Taylor, 2000b. The influence of metapopulation structure on genotypic fitness in a gynodioecious plant. Evol. Ecol. 14: 181–194.

    Google Scholar 

  • McCauley, D.E. & D.R. Taylor, 1997. Local population structure and sex ratio: evolution in gynodioecious plants. Am. Nat. 150: 406–419.

    Google Scholar 

  • Olson, M.S. & J.A. Antonovics, 2000. Correlations between male and female reproduction in the near-dioecious herb Astilbe biternata. Am. J. Bot. 87: 837–844.

    PubMed  Google Scholar 

  • Olson, M.S. & D.E. McCauley, 2000. Linkage disequilibrium and phylogenetic congruence between chloroplast and mitochondrial haplotypes in Silene vulgaris. Proc. R. Soc. Lond. B Biol. Sci. 267: 1801–1808.

    Google Scholar 

  • Olson, M.S. & D.E. McCauley, 2002. Mitochondrial DNA diversity, population structure, and gender association in the gynodioecious plant Silene vulgaris. Evolution 56: 253–262.

    PubMed  Google Scholar 

  • Pannell, J., 1997. The maintenance of gynodioecy and andro-dioecy in a metapopulation. Evolution 51: 10–20.

    Google Scholar 

  • Petterson, M.W., 1992. Advantages of being a specialist female in nondioecious Silene vulgaris S.L. (Caryophyllaceae). Am. J. Bot. 79: 1389–1395.

    Google Scholar 

  • Ross, M.D. & H.-R. Gregorius, 1985. Selection with genecytoplasm interactions. II. Maintenance of gynodioecy. Genetics 109: 427–439.

    Google Scholar 

  • Saumitou-Laprade, P., J. Cuguen & P. Vernet, 1994. Cytoplasmic male sterility in plants: molecular evidence and the nucleocytoplasmic conflict. Trends Ecol. Evol. 9: 431–435.

    Google Scholar 

  • Schnable, P.S. & R.P. Wise, 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3: 175–180.

    Google Scholar 

  • Slatkin, M., 1977. Gene flow and genetic drift in a species subject to frequent local extinctions. Theor. Popul. Biol. 12: 253–262.

    PubMed  Google Scholar 

  • Taylor, D.R., D. McCauley & S. Trimble, 1999. Colonization success of females and hermaphrodites in the gynodioecious plant, Silene vulgaris. Evolution 53: 745–751.

    Google Scholar 

  • Taylor, D.R., M.S. Olson & D.E. McCauley, 2001. A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. Genetics 158: 833–841.

    PubMed  Google Scholar 

  • Van Damme, J.M.M., 1983. Gynodioecy in Plantago lanceolata L. II. Inheritance of three male sterility types. Heredity 50: 253–273.

    Google Scholar 

  • Wade, M.J. & C.J. Goodnight, 1998. Perspective: The theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52: 1537–1553.

    Google Scholar 

  • Werren, J.H. & L.W. Beukeboom, 1998. Sex determination, sex ratios, and genetic conflict. Annu. Rev. Ecol. Syst. 29: 233–261.

    Google Scholar 

  • Wilson, D.S., 1979. Structured demes and trait-group variation. Am. Nat. 113: 606–610.

    Google Scholar 

  • Wilson, D.S., 1980. The Natural Selection of Populations and Communities. Benjamin/Cummings, Menlo Park, CA, USA.

    Google Scholar 

  • Wright, S., 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Olson .

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Olson, M.S., McCauley, D.E., Taylor, D. (2005). Genetics and adaptation in structured populations: sex ratio evolution in Silene vulgaris. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_6

Download citation

Publish with us

Policies and ethics