Skip to main content

A Biomechanical Multibody Model with a Detailed Locomotion Muscle Apparatus

  • Chapter
Advances in Computational Multibody Systems

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 2))

  • 1268 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamaguchi GT, Moran DW, Si J (1995) A computationally efficient method for solving the redundant problem in biomechanics. J. Biomech 28(8): 999–1005

    Article  Google Scholar 

  2. Jalon J G, Bayo E (1994) Kinematic and Dynamic Simulation of Mechanical Systems — The Real-Time Challenge. Springer-Verlag, Berlin, Germany

    Google Scholar 

  3. Silva M, Ambrosio J and Pereira M (1997) Biomechanical Model with Joint Resistance for Impact Simulation. Multibody System Dynamics 1(1): 65–84

    Article  Google Scholar 

  4. Laananen D, Bolokbasi A, Coltman J (1983) Computer simulation of an aircraft seat and occupant in a crash environment — Volume I: technical report, US Dept of Transp., Federal Aviation Administration, Report n DOT/FAA/CT-82/33-I

    Google Scholar 

  5. Ambrósio J, Silva M, Abrantes J (1999) Inverse Dynamic Analysis of Human Gait Using Consistent Data. In Proc of the IV Int. Symp. on Computer Methods in Biomechanics and Biomedical Engng, October13–16, Lisbon, Portugal

    Google Scholar 

  6. Silva M, Ambrósio J (2004) Sensitivity of the Results Produced by the Inverse Dynamic Analysis of a Human Stride to Perturbed Input Data. Gait and Posture 19(1): 35–49

    Article  Google Scholar 

  7. Collins J (1995) The redundant nature of locomotor optimization laws, J. Biomech. 28(3): 251–267

    Article  Google Scholar 

  8. Crowninshield R, Brand R (1981) Physiologically Based Criterion of Muscle Force Prediction in Locomotion. J. Biomech. 14(11): 793–801

    Article  Google Scholar 

  9. Zajac F (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 17(4): 359–411

    Google Scholar 

  10. Hatze H (1984) Quantitative Analysis, Synthesis and Optimization of Human Motion. Human Movement Science 3: 5–25

    Article  Google Scholar 

  11. Silva M (2003) Human Motion Analysis Using Multibody Dynamics and Optimization Tools. Ph.D. Dissertation, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal

    Google Scholar 

  12. Silva M, Ambrósio J, Pereira M (1997) A multibody approach to the vehicle and occupant integrated simulation. Int. J. of Crashworthiness 2(1): 73–90

    Google Scholar 

  13. Nikravesh P (1988) Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood-Cliffs, New Jersey

    Google Scholar 

  14. Haug E (1989) Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston, Massachusetts

    Google Scholar 

  15. Winter D (1990) Biomechanics And Motor Control Of Human Movement, 2nd Ed., John Wiley & Sons, Toronto, Canada

    Google Scholar 

  16. Silva M, Ambrósio J (2002) Kinematic Data Consistency in the Inverse Dynamic Analysis of Biomechanical Systems. Multibody System Dynamics 8(2): 219–239

    Article  Google Scholar 

  17. Celigüeta J (1996) Multibody Simulation of Human Body Motion in Sports. In Abrantes J (ed.) Proceedings of the XIV International Symposium on Biomechanics in Sports, June 25–29, Funchal, Portugal, pp 81–94

    Google Scholar 

  18. Addel-Aziz Y, Karara H (1971) Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry. In Proc. of the Symposium on Close-range Photogrammetry, Falls Church, Virginia, pp. 1–18.

    Google Scholar 

  19. Ambrósio J, Silva M, Lopes G (1999) Reconstrução do Movimento Humano e Dinâmica Inversa Utilizando Ferramentas Numéricas Baseadas em Sistemas Multicorpo. In Proceedings of the IV Congreso de Métodos Numéricos en Ingeniería, Sevilha, 7–10 June

    Google Scholar 

  20. Nigg B, Herzog W (1999) Biomechanics of the Musculo-skeletal System, John Wiley & Sons, New York, New York

    Google Scholar 

  21. Allard P, Stokes I, Blanchi J (1995) Three-Dimensional Analysis of Human Movement. Human Kinetics, Champaign, Illinois

    Google Scholar 

  22. Richardson M (2001) Lower Extremity Muscle Atlas, in internet address http://www.rad.washington.edu/atlas2/, University of Washington-Department of Radiology, Washington

    Google Scholar 

  23. Yamaguchi G (2001) Dynamic Modeling of Musculoskeletal Motion. Kluwer Academic Publishers, Boston, Massachussetts

    Google Scholar 

  24. Carhart M (2000) Biomechanical Analysis of Compensatory Steping: Implications for paraplegics Standing Via FNS., Ph.D. Dissertation, Department of Bioengineering, Arizona State University, Tempe, Arizona

    Google Scholar 

  25. Vanderplaats R&D (1999) DOT — Design Optimization Tools — USERS MANUAL — Version 5.0, Colorado Springs, Colorado

    Google Scholar 

  26. V. Numerics (1995) IMSL FORTRAN Numerical Libraries — Version 5.0, Microsoft Corp.

    Google Scholar 

  27. Svanberg K (1999) The MMA for Modeling and Solving Optimization Problems. In Proceedings of the 3rd World Congress of Structural and Multidisciplinary Optimization, May 17–21, New York

    Google Scholar 

  28. Winter D (1991) The biomechanics and motor control of human gait: Normal, Elderly and Pathological, 2nd Ed. University of Waterloo Press, Waterloo, Canada

    Google Scholar 

  29. Tsirakos D, Baltzopoulos V, Bartlett R (1997) Inverse Optimization: Functional and Physiological Considerations Related to the Force-Sharing Problem. Critical Reviews in Biomedical Engineering 25(4–5): 371–407

    Google Scholar 

  30. Anderson F, Pandy M (2001) Static and Dynamic Optimization Solutions for Gait are Practically Equivalent. J. Biomech. 34: 153–161

    Article  Google Scholar 

  31. Patriarco A., Mann R, Simon S, Mansour J (1981) An Evaluation of the Approaches of Optimization Models in the Prediction of Muscle Forces During Gait. J. Biomech. 14(8): 513–525

    Article  Google Scholar 

  32. Pedersen D, Brand R, Cheng C, Arora J (1987) Direct Comparison of Muscle Force Predictions Using Linear and Nonlinear Programming. ASME Journal of Biomechanical Engineering 109: 192–199

    Google Scholar 

  33. Palastanga N, Field D, Soames R (2002) Anatomy and Human Movement-Structure and Function. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Jorge A.C., A., Silva, M.P. (2005). A Biomechanical Multibody Model with a Detailed Locomotion Muscle Apparatus. In: Ambrósio, J.A. (eds) Advances in Computational Multibody Systems. Computational Methods in Applied Sciences, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3393-1_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3393-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3392-6

  • Online ISBN: 978-1-4020-3393-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics