Skip to main content

Binary-Fluid Heat and Mass Transfer in Microchannel Geometries for Miniaturized Thermally Activated Absorption Heat Pumps

  • Conference paper
Microscale Heat Transfer Fundamentals and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 193))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garimella, S., Christensen, R. N., and Lacy, D. (1996) Performance Evaluation of a Generator-Absorber Heat-Exchange Heat Pump, Applied Thermal Engineering, Vol. 16(7), pp. 591–604.

    Article  Google Scholar 

  2. Engler, M., Grossman, G., and Hellmann, H.-M. (1997) Comparative Simulation and Investigation of Ammonia-Water: Absorption Cycles for Heat Pump Applications, International Journal of Refrigeration, Vol. 20(7), pp. 504–516.

    Article  Google Scholar 

  3. Gommed, K., and Grossman, G. (1990) Performance Analysis of Staged Absorption Heat Pumps Water-Lithium Bromide Systems, ASHRAE Transactions, Vol. 96(1), pp. 1590–1598.

    Google Scholar 

  4. Garimella, S., Christensen, R. N., and Petty, S. E. (1992) Cycle Description and Performance Simulation of a Gas-Fired Hydronically Coupled Double-Effect Absorption Heat Pump System, Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, CA, USA, Vol. 28, ASME, New York, NY, USA, pp. 7–14.

    Google Scholar 

  5. McGahey, K. R., Garimella, S., Cook, F. B., and Christensen, R. N. (1994) Enhancement of the ORNL Absorption Model and Simulation of a Double-Effect Absorption Heat Pump, Proceedings of the International Absorption Heat Pump Conference, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 141–148.

    Google Scholar 

  6. Garimella, S., Lacy, D., and Stout, R. E. (1997) Space-Conditioning Using Triple-Effect Absorption Heat Pumps, Applied Thermal Engineering, Vol. 17(12), pp. 1183–1197.

    Article  Google Scholar 

  7. Grossman, G., Wilk, M., and DeVault, R. C. (1994) Simulation and Performance Analysis of Triple-Effect Absorption Cycles, Proceedings of the ASHRAE Winter Meeting, New Orleans, LA, USA, Vol. 100, ASHRAE, Atlanta, GA, USA, pp. 452–462.

    Google Scholar 

  8. Ivester, D. N., and Shelton, S. V. (1994) Varying Heat Exchanger Parameters in the Triple-Effect Absorption Cycle, Proceedings of the International Absorption Heat Pump Conference, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 243–250.

    Google Scholar 

  9. DeVault, R. C., and Marsala, J. (1990) Ammonia-Water Triple-Effect Absorption Cycle, ASHRAE Transactions, Vol. 96(1).

    Google Scholar 

  10. Grossman, G., Zaltash, A., and DeVault, R. C. (1995) Simulation and Performance Analysis of a Four-Effect Lithium Bromide-Water Absorption Chiller, Proceedings of the 1995 ASHRAE Annual Meeting, Chicago, IL, USA, Vol. 101, ASHRAE, Atlanta, GA, USA, pp. 1302–1312.

    Google Scholar 

  11. Ziegler, F., and Alefeld, G. (1994) Comparison of Multi-Effect Absorption Cycles, Proceedings of the International Absorption Heat Pump Conference, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 257–264.

    Google Scholar 

  12. Beutler, A., Hoffmann, L., Ziegler, F., Alefeld, G., Gommed, K., Grossman, G., and Shavit, A. (1996) Experimental Investigation of Heat and Mass Transfer on Horizontal and Vertical Tubes, Proceedings of the International Ab-Sorption Heat Pump Conference, Montreal, Canada, pp. 409–419.

    Google Scholar 

  13. Beutler, A., Ziegler, F., and Alefeld, G. (1996) Falling Film Absorption with Solutions of a Hydroxide Mixture, International Ab-Sorption Heat Pump Conference, Montreal, Canada, pp. 303–309.

    Google Scholar 

  14. Miller, W. A., and Perez-Blanco, H. (1994) Vertical-Tube Aqueous LiBr Falling Film Absorption Using Advanced Surfaces, Proceedings of the International Absorption Heat Pump Conference, Jan 19–21 1994, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 185–202.

    Google Scholar 

  15. Hoffmann, L., and Ziegler, F. (1996) Experimental Investigation of Heat and Mass Transfer with Aqueous Ammonia, International Ab-sorption Heat Pump Conference, Montreal, Canada, pp. 383–392.

    Google Scholar 

  16. Ryan, W. A. (1994) Water Absorption in an Adiabatic Spray of Aqueous Lithium Bromide Solution, Proceedings of the International Absorption Heat Pump Conference, Jan 19–21 1994, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 155–162.

    Google Scholar 

  17. Michel, J. W., and Perez-Blanco, H. (1985) Influence of Surfactant Additive on Absorption Heat Pump Performance, ASHRAE Transactions, Vol. 91, Part 2B, p. 1847.

    Google Scholar 

  18. Kim, K. J., Berman, N. S., and Wood, B. D. (1994) Experimental Investigation of Enhanced Heat and Mass Transfer Mechanisms Using Additives for Vertical Falling Film Absorber, Proceedings of the International Absorption Heat Pump Conference, Jan 19–21 1994, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 41–47.

    Google Scholar 

  19. Jung, S.-H., Sgamboti, C., and Perez-Blanco, H. (1994) Experimental Study of the Effect of Some Additives on Falling Film Absorption, Proceedings of the International Absorption Heat Pump Conference, Jan 19–21 1994, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 49–55.

    Google Scholar 

  20. Ziegler, F., and Grossman, G. (1996) Heat-Transfer Enhancement by Additives, International Journal of Refrigeration, Vol. 19(5), pp. 301–309.

    Article  Google Scholar 

  21. Merrill, T., Setoguchi, T., and Perez-Blanco, H. (1994) Compact Bubble Absorber Design and Analysis, Proceedings of the International Absorption Heat Pump Conference, Jan 19–21 1994, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 217–223.

    Google Scholar 

  22. Merrill, T. L., Setoguchi, T., and Perez-Blanco, H. (1995) Passive Heat Transfer Enhancement Techniques Applied to Compact Bubble Absorber Design, Journal of Enhanced Heat Transfer, Vol. 2(3), pp. 199–208.

    Google Scholar 

  23. Merrill, T. L., and Perez-Blanco, H. (1997) Combined Heat and Mass Transfer During Bubble Absorption in Binary Solutions, International Journal of Heat and Mass Transfer, Vol. 40(3), pp. 589–603.

    Article  MATH  Google Scholar 

  24. Herbine, G. S., and Perez-Blanco, H. (1995) Model of an Ammonia-Water Bubble Absorber, Proceedings of the 1995 ASHRAE Annual Meeting, Jan 29–Feb 1 1995, Chicago, IL, USA, Vol. 101, ASHRAE, Atlanta, GA, USA, pp. 1324–1332.

    Google Scholar 

  25. Kang, Y. T., and Christensen, R. N. (1994) Development of a Counter-Current Model for a Vertical Fluted Tube GAX Absorber, Proceedings of the International Absorption Heat Pump Conference, Jan 19–21 1994, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 7–16.

    Google Scholar 

  26. Kang, Y. T., Kashiwagi, T., and Christensen, R. N. (1998) Ammonia-Water Bubble Absorber with a Plate Heat Exchanger, Proceedings of the 1998 ASHRAE Winter Meeting. Part 2 (of 2), Jan 18–21 1998, San Francisco, CA, USA, Vol. 104, ASHRAE, Atlanta, GA, USA, pp. 1565–1575.

    Google Scholar 

  27. Christensen, R. N., Garimella, S., Kang, Y. T., and Garrabrant, M. A. (1998) Perforated Fin Heat and Mass Transfer Device, Patent 5,704,417.

    Google Scholar 

  28. Garrabrant, M. A., and Christensen, R. N. (1997) Modeling and Experimental Verification of a Perforated Plate-Fin Absorber for Aqua-Ammonia Absorption Systems, Proceedings of the 1997 ASME International Mechanical Engineering Congress and Exposition, Nov 16–21 1997, Dallas, TX, USA, Vol. 37, ASME, Fairfield, NJ, USA, pp. 337–347.

    Google Scholar 

  29. Perez-Blanco, H. (1988) A Model of an Ammonia-Water Falling Film Absorber, ASHRAE Transactions, Vol. 94(1), pp. 467–483.

    Google Scholar 

  30. Jeong, S., Koo, K.-K., and Lee, S. K. (1998) Heat Transfer Performance of a Coiled Tube Absorber with Working Fluid of Ammonia/Water, Proceedings of the 1998 ASHRAE Winter Meeting. Part 2 (of 2), Jan 18–21 1998, San Francisco, CA, USA, Vol. 104, ASHRAE, Atlanta, GA, USA, pp. 1577–1583.

    Google Scholar 

  31. Potnis, S. V., Anand, G., Gomezplata, A., Erickson, D. C., and Papar, R. A. (1997) GAX Component Simulation and Validation, Proceedings of the 1997 ASHRAE Winter Meeting, Jan 26–29 1997, Philadelphia, PA, USA, Vol. 103, ASHRAE, Atlanta, GA, USA, pp. 454–459.

    Google Scholar 

  32. Garimella, S. (2004) Method and Means for Miniaturization of Binary-Fluid Heat and Mass Exchangers, Patent 6,802,364.

    Google Scholar 

  33. Garimella, S. (1999) Miniaturized Heat and Mass Transfer Technology for Absorption Heat Pumps, Proceedings of the International Sorption Heat Pump Conference, Munich, Germany, pp. 661–670.

    Google Scholar 

  34. Garimella, S. (2000) Microchannel Components for Absorption Space-Conditioning Systems, 2000 ASHRAE Winter Meeting, Feb 5–Feb 9 2000, Dallas, TX, USA, Vol. 106 (PA, Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc., Atlanta, GA, USA, pp. 453–462.

    Google Scholar 

  35. Richter, H. J. (1981) Flooding in Tubes and Annuli, International Journal of Multiphase Flow, Vol. 7(6), pp. 647–658.

    Article  Google Scholar 

  36. Meacham, J. M., and Garimella, S. (2002) Experimental Demonstration of a Prototype Microchannel Absorber for Space-Conditioning Systems, International Sorption Heat Pump Conference, Shanghai, China, pp. 270–276.

    Google Scholar 

  37. Meacham, J. M., and Garimella, S. (2003) Modeling of Local Measured Heat and Mass Transfer Variations in a Microchannel Ammonia-Water Absorber, Technical and Symposium Papers Presented At the 2003 Winter Meeting of The ASHRAE, Jan 26–29 2003, Chicago, IL, United States, Vol. 109 PART 1, Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc., pp. 412–422.

    Google Scholar 

  38. Price, B. C., and Bell, K. J. (1974) Design of Binary Vapor Condensers Using the Colburn-Drew Equations, AIChE Symposium Series-Heat Transfer-Research and Design, Vol. 70(138), pp. 163–171.

    Google Scholar 

  39. Colburn, A. P., and Drew, T. B. (1937) The Condensation of Mixed Vapours, AIChE Transactions, Vol. 33, pp. 197–212.

    Google Scholar 

  40. Kang, Y. T., and Christensen, R. N. (1995) Combined Heat and Mass Transfer Analysis for Absorption in a Fluted Tube with a Porous Medium in Confined Cross Flow, Proceedings of the 1995 ASME/JSME Thermal Engineering Joint Conference. Part 1 (of 4), Mar 19–24 1995, Maui, HI, USA, Vol. 1, ASME, New York, NY, USA, pp. 251–260.

    Google Scholar 

  41. Kang, Y. T., Chen, W., and Christensen, R. N. (1997) Generalized Component Design Model by Combined Heat and Mass Transfer Analysis in NH3/H2O Absorption Heat Pump Systems, Proceedings of the 1997 ASHRAE Winter Meeting, Jan 26–29 1997, Philadelphia, PA, USA, Vol. 103, ASHRAE, Atlanta, GA, USA, pp. 444–453.

    Google Scholar 

  42. Meacham, J. M., and Garimella, S. (2004) Ammonia-Water Absorption Heat and Mass Transfer in Microchannel Absorbers with Visual Confirmation, ASHRAE Transactions, Vol. 110(1), pp. 525–532.

    Google Scholar 

  43. Determan, M. D., Garimella, S., and Lee, S. (2004) Experimental Demonstration of a Microchannel Desorber for Ammonia-Water Heat Pumps, Seventeenth National Heat and Mass Transfer Conference and Sixth ISHMT/ASME Heat and Mass Transfer Conference, Kalpakkam, India, pp. 453–458.

    Google Scholar 

  44. Killion, J. D., and Garimella, S. (2001) A Critical Review of Models of Coupled Heat and Mass Transfer in Falling-Film Absorption, International Journal of Refrigeration, Vol. 24(8), pp. 755–797.

    Article  Google Scholar 

  45. Killion, J. D., and Garimella, S. (2003) A Review of Experimental Investigations of Absorption of Water Vapor in Liquid Films Falling over Horizontal Tubes, HVAC and R Research, Vol. 9(2), pp. 111–136.

    Google Scholar 

  46. Jeong, S., and Garimella, S. (2002) Falling-Film and Droplet Mode Heat and Mass Transfer in a Horizontal Tube LiBr/Water Absorber, International Journal of Heat and Mass Transfer, Vol. 45(7), pp. 1445–1458.

    Article  Google Scholar 

  47. Painter, J. F., and Hindmarsh, A. C. (1987) Livermore Solver for Ordinary Differential Equations (LSODI), Lawrence Livermore National Laboratory.

    Google Scholar 

  48. Nomura, T., Nishimura, N., Wei, S., Yamaguchi, S., and Kawakami, R. (1994) Heat and Mass Transfer Mechanism in the Absorber of Water/LiBr Convectional Absorption Refrigerator: Experimental Examination by Visualized Model, Proceedings of the International Absorption Heat Pump Conference, Jan 19–21 1994, New Orleans, LA, USA, ASME, New York, NY, USA, pp. 203–208.

    Google Scholar 

  49. Jeong, S., and Garimella, S. (2005) Optimal Design of Compact Horizontal Tube LiBr/Water Absorbers, HVAC and R Research, Vol. 11(in press).

    Google Scholar 

  50. Killion, J. D., and Garimella, S. (2003) Gravity-Driven Flow of Liquid Films and Droplets in Horizontal Tube Banks, International Journal of Refrigeration, Vol. 26(5), pp. 516–526.

    Article  Google Scholar 

  51. Hu, X., and Jacobi, A. M. (1996) The Inter Tube Falling Film: Part 1-Flow Characteristics, Mode Transition, and Hysteresis, Journal of Heat Transfer, Vol. 118, pp. 616–625.

    Google Scholar 

  52. Kirby, M. J., and Perez-Blanco, H. (1994) Design Model for Horizontal Tube Water/Lithium Bromide Absorbers, Proceedings of the 1994 International Mechanical Engineering Congress and Exposition, Nov 6–11 1994, Chicago, IL, USA, Vol. 32, ASME, New York, NY, USA, pp. 1–10.

    Google Scholar 

  53. Zhang, X. (1999) Dynamics of Growth and Breakup of Viscous Pendant Drops into Air, Journal of Colloid and Interface Science, Vol. 212(1), pp. 107–122.

    Article  Google Scholar 

  54. Peregrine, D. H., Shoker, G., and Symon, A. (1990) Bifurcation of Liquid Bridges, Journal of Fluid Mechanics, Vol. 212, pp. 25–39.

    Article  MathSciNet  Google Scholar 

  55. Zhang, X., and Basaran, O. A. (1995) An Experimental Study of Dynamics of Drop Formation, Physics of Fluids, Vol. 7(6), pp. 1184–1203.

    Article  Google Scholar 

  56. Richards, J. R., Beris, A. N., and Lenhoff, A. M. (1995) Drop Formation in Liquid—Liquid Systems before and after Jetting, Physics of Fluids, Vol. 7(11), pp. 2617–2630.

    Article  MATH  Google Scholar 

  57. Zhang, D. F., and Stone, H. A. (1997) Drop Formation in Viscous Flows at a Vertical Capillary Tube, Physics of Fluids, Vol. 9(8), pp. 2234–2242.

    Article  Google Scholar 

  58. Brauner, N., and Maron, D. M. (1982) Characteristics of Inclined Thin Films, Waviness and the Associated Mass Transfer, International Journal of Heat and Mass Transfer, Vol. 25(1), pp. 99–110.

    Article  Google Scholar 

  59. Burdukov, A. P., Bufetov, N. S., Deriy, N. P., Dorokhov, A. R., and Kazakov, V. I. (1980) Experimental Study of the Absorption of Water Vapor by Thin Films of Aqueous Lithium Bromide., Heat Transfer-Soviet Research, Vol. 12(3), pp. 118–123.

    Google Scholar 

  60. Nakoryakov, V. Y., Burdukov, A. P., Bufetov, N. S., Grigor’eva, N. I., and Dorokhov, A. R. (1982) Coefficient of Heat and Mass Transfer in Falling Wavy Liquid Films, Heat Transfer-Soviet Research, Vol. 14(3), pp. 6–11.

    Google Scholar 

  61. Uddholm, H., and Setterwall, F. (1988) Model for Dimensioning a Falling Film Absorber in an Absorption Heat Pump, International Journal of Refrigeration, Vol. 11(1), pp. 41–45.

    Article  Google Scholar 

  62. Mudawar, I., and Houpt, R. A. (1993) Measurement of Mass and Momentum Transport in Wavy-Laminar Falling Liquid Films, International Journal of Heat and Mass Transfer, Vol. 36(17), pp. 4151–4162.

    Article  Google Scholar 

  63. Killion, J. D., and Garimella, S. (2004) Pendant Droplet Motion for Absorption on Horizontal Tube Banks, International Journal of Heat and Mass Transfer, Vol. 47(19–20), pp. 4403–4414.

    Article  Google Scholar 

  64. Kumar, R., and Kuloor, N. R. (1970) The Formation of Bubbles and Drops, Advances in Chemical Engineering, Vol. 8, pp. 255–368.

    Article  Google Scholar 

  65. Clift, R., Grace, J. R., and Weber, M. E. (1978) Bubbles, Drops, and Particles, Academic Press, New York, NY, USA.

    Google Scholar 

  66. Frohn, A., and Roth, N. (2000) Dynamics of Droplets, in Experimental Fluid Mechanics, Springer, Berlin, New York, p. 292.

    Google Scholar 

  67. Eggers, J. (1997) Nonlinear Dynamics and Breakup of Free-Surface Flows, Reviews of Modern Physics, Vol. 69(3), p. 865.

    Article  Google Scholar 

  68. Middleman, S. (1995) Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, p. 299.

    Google Scholar 

  69. Yarin, A. L. (1993) Free Liquid Jets and Films: Hydrodynamics and Rheology, Longman Publishing Group.

    Google Scholar 

  70. Bogy, D. B. (1979) Drop Formation in a Circular Liquid Jet, Vol. 11, pp. 207–228.

    Google Scholar 

  71. Rein, M. (1993) Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces, Fluid Dynamics Research, Vol. 12(2), pp. 61–93.

    Article  Google Scholar 

  72. Tropea, C., and Marengo, M. (1999) Impact of Drops on Walls and Films, Multiphase Science and Technology, Vol. 11(1), pp. 19–36.

    Google Scholar 

  73. The Mathworks Inc. (2002) Matlab Version 6.5.0.180913a Release 13, http://www.math-works.com, Natick, MA.

    Google Scholar 

  74. Canny, J. (1986) A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8(6), pp. 679–698.

    Article  Google Scholar 

  75. Sobel, I. E. (1970) Doctoral Thesis: Camera Models and Machine Perception, Doctoral Thesis, Dept. of Electrical Engineering, Stanford University, Palo Alto, p. 89 (also in Stanford Computer Science Dept. Artificial Intelligence Laboratory. AIM-121 technical report).

    Google Scholar 

  76. de Boor, C. (1978) A Practical Guide to Splines, in Applied Mathematical Sciences, F. John, et al., Editors, Springer-Verlag, New York, p. xxiv, 392.

    Google Scholar 

  77. Cohen, E., Riesenfeld, R. F., and Elber, G. (2001) Geometric Modeling with Splines: An Introduction, AK Peters, Natick, Mass., p. xxii, 616.

    MATH  Google Scholar 

  78. The Mathworks Inc. (2002) Matlab Spline Toolbox, Ver. 3.1.1, Matlab Version 6.5.0.180913a Release 13, Natick, MA.

    Google Scholar 

  79. Carey, V. P. (1992) Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, in Series in Chemical and Mechanical Engineering, G.F. Hewitt and C.L. Tien, Editors, Taylor & Francis Series, Hemisphere Pub. Corp., Washington, D.C., p. xvii, 645.

    Google Scholar 

  80. Killion, J. D., and Garimella, S. (2005) Simulation of Pendant Droplets and Falling Films in Horizontal Tube Absorbers, Journal of Heat Transfer, Vol. 127 (in press).

    Google Scholar 

  81. Rider, W. J., and Kothe, D. B. (1998) Reconstructing Volume Tracking, Journal of Computational Physics, Vol. 141(2), pp. 112–152.

    Article  MathSciNet  MATH  Google Scholar 

  82. Kothe, D. B., and Mjolsness, R. C. (1992) Ripple: A New Model for Incompressible Flows with Free Surfaces, AIAA Journal, Vol. 30(11), pp. 2694–2700.

    Article  MATH  Google Scholar 

  83. Brackbill, J. U., and Kothe, D. B. (1996) Dynamical Modeling of Surface Tension, Proceedings of the 1996 3rd Microgravity Fluid Physics Conference, Jul 13–15 1996, Cleveland, OH, USA, NASA, Cleveland, OH, USA, pp. 693–698.

    Google Scholar 

  84. Brackbill, J. U., Kothe, D. B., and Zemach, C. (1992) A Continuum Method for Modeling Surface Tension, Journal of Computational Physics, Vol. 100(2), pp. 335–354.

    Article  MathSciNet  MATH  Google Scholar 

  85. Kelkar, K. M., and Patankar, S. V. (1994) Numerical Method for the Prediction of Two-Fluid Flows in Domains with Moving Boundaries, Proceedings of the 1994 ASME Fluids Engineering Division Summer Meeting. Part 7 (of 18), Jun 19–23 1994, Lake Tahoe, NV, USA, Vol. 185, ASME, New York, NY, USA, pp. 169–176.

    Google Scholar 

  86. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S. (1999) Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows, Journal of Computational Physics, Vol. 152(2), pp. 423–456.

    Article  MATH  Google Scholar 

  87. Harvie, D. J. E., and Fletcher, D. F. (2001) A New Volume of Fluid Advection Algorithm: The Defined Donating Region Scheme, International Journal for Numerical Methods in Fluids, Vol. 35(2), pp. 151–172.

    Article  MathSciNet  MATH  Google Scholar 

  88. Rudman, M. (1997) Volume-Tracking Methods for Interfacial Flow Calculations, International Journal for Numerical Methods in Fluids, Vol. 24(7), pp. 671–691.

    Article  MATH  MathSciNet  Google Scholar 

  89. Rudman, M. (1998) Volume-Tracking Method for Incompressible Multifluid Flows with Large Density Variations, International Journal for Numerical Methods in Fluids, Vol. 28(2), pp. 357–378.

    Article  MATH  Google Scholar 

  90. Prosperetti, A., and Oguz, H. N. (1993) Impact of Drops on Liquid Surfaces and the Underwater Noise of Rain, Annual Review of Fluid Mechanics, Vol. 25, p. 577.

    Article  Google Scholar 

  91. Rieber, M., and Frohn, A. (1999) A Numerical Study on the Mechanism of Splashing, International Journal of Heat and Fluid Flow, Vol. 20(5), pp. 455–461.

    Article  Google Scholar 

  92. Zhang, X. (1999) Dynamics of Drop Formation in Viscous Flows, Chemical Engineering Science, Vol. 54(12), pp. 1759–1774.

    Article  Google Scholar 

  93. Oguz, H. N., and Prosperetti, A. (1993) Dynamics of Bubble Growth and Detachment from a Needle, Journal of Fluid Mechanics, Vol. 257, pp. 111–145.

    Article  Google Scholar 

  94. Chen, L., Garimella, S. V., Reizes, J. A., and Leonardi, E. (1997) Motion of Interacting Gas Bubbles in a Viscous Liquid Including Wall Effects and Evaporation, Numerical Heat Transfer; Part A: Applications, Vol. 31(6), pp. 629–654.

    Google Scholar 

  95. Fluent Inc. (2003) Fluent, Lebanon, NH.

    Google Scholar 

  96. Issa, R. I. (1986) Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting, Journal of Computational Physics, Vol. 62(1), pp. 40–65.

    Article  MATH  MathSciNet  Google Scholar 

  97. Youngs, D. L. (1982) Time-Dependent Multi-Material Flow with Large Fluid Distortion, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, Editors, Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Garimella, S. (2005). Binary-Fluid Heat and Mass Transfer in Microchannel Geometries for Miniaturized Thermally Activated Absorption Heat Pumps. In: Kakaç, S., Vasiliev, L., Bayazitoğlu, Y., Yener, Y. (eds) Microscale Heat Transfer Fundamentals and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 193. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3361-3_18

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3361-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3359-9

  • Online ISBN: 978-1-4020-3361-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics