Skip to main content

The Role of Caspases in Apoptosis and Their Inhibition in Mammalian Cell Culture

  • Chapter
Cell Engineering

Part of the book series: Cell Engineering ((CEEN,volume 4))

Conclusions

The work presented herein provides a general overview of caspase involvement in the apoptotic pathways and methods available for their inhibition. Genetic and chemical approaches may be utilized to lengthen batch times of cultured mammalian cells and in some instances, mutational analyses of genetic inhibitors are an effective means to obtain higher cell viabilities in culture. If these approaches to manipulate caspase activity in cell lines are applied in conjunction with improvements in bioreactor design, culture medium, cell line development, and expression vector design, optimum biopharmaceutical yield will be possible. Such advancements may lead to a more cost-effective biotechnology operation with recombinant protein yields surpassing those previously obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrain, C., Creagh, E.M., and Martin, S.J. (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J. 20, 6627–6638.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, M., Srinivasula, S.M., Hegde, R., Mukattash, R., Fernandes-Alnemri, T., and Alnemri, E.S. (1998) Identification and characterization of murine caspase-14, a new member of the caspase family. Cancer Res. 58, 5201–5205.

    CAS  PubMed  Google Scholar 

  • Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W., and Yuan, J. (1996) Human ICE/CED-3 protease nomenclature. Cell 87, 171.

    Article  CAS  PubMed  Google Scholar 

  • An, B., Jin, J.R., Lin, P., and Dou, Q.P. (1996) Failure to activate interleukin-1β converting enzyme-like proteases and to cleave retinoblastoma protein in drug-resistant cells. FEBS Lett. 399, 158–162.

    Article  CAS  PubMed  Google Scholar 

  • Antoku, K., Liu, Z., and Johnson, D.E. (1997) Inhibition of caspase proteases by CrmA enhances the resistance of human leukemic cells to multiple chemotherapeutic agents. Leukemia 11, 1665–1672.

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi, A., and Dixit, V.M. (1998) Death receptors: Signaling and modulation. Science 281, 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  • Beidler, D.R., Tewari, M., Friesen, P.D., Poirier, G., and Dixit, V.M. (1995) The baculovirus p35 protein inhibits Fas-and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 270, 16526–16528.

    Article  CAS  PubMed  Google Scholar 

  • Bertin, J., Mendrysa, S.M., LaCount, D.J., Gaur, S., Krebs, J.F., Armstrong, R.C., Tomaselli, K.J., and Friesen, P.D. (1996) Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J. Virol. 70, 6251–6259.

    CAS  PubMed  Google Scholar 

  • Birnbaum, M.J., Clem, R.J., and Miller, L.K. (1994) An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J. Virol. 68, 2521–2528.

    CAS  PubMed  Google Scholar 

  • Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85, 803–815.

    Article  CAS  PubMed  Google Scholar 

  • Boudreau, N., Sympson, C.J., Werb, Z., and Bissell, M.J. (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891–893.

    CAS  PubMed  Google Scholar 

  • Brancolini, C., Benedetti, M., and Schneider, C. (1995) Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like proteases. EMBO J. 14, 5179–5190.

    CAS  PubMed  Google Scholar 

  • Brancolini, C., Lazarevic, D., Rodriguez, J., and Schneider, C. (1997) Dismantling cell-cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of betacatenin. J. Cell Biol. 139, 759–771.

    Article  CAS  PubMed  Google Scholar 

  • Brancolini, C., Sgorbissa, A., and Schneider, C. (1998) Proteolytic processing of the adherens junctions components beta-catenin and gamma-catenin/plakoglobin during apoptosis. Cell Death Differ. 5, 1042–1050.

    Article  CAS  PubMed  Google Scholar 

  • Buendia, B., Santa-Maria, A., and Courvalin, J.C. (1999) Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J. Cell Sci. 112, 1743–1753.

    CAS  PubMed  Google Scholar 

  • Bump, N.J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C., Franklin, S., Ghayur, T., Li, P., Lacari, P., Mankovich, J., Shi, L., Greenburg, A.H., Miller, L.K., and Wong, W.W. (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269, 1885–1888.

    CAS  PubMed  Google Scholar 

  • Byun, Y., Chen, F., Chang, R., Trivedi, M., Green, K.J., and Cryns, V.L. (2001) Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ. 8, 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Cain, K., Bratton, S.B., Langlais, C., Walker, G., Brown, D.G., Sun, X.M., and Cohen, G.M. (2000) Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-Mda apoptosome complexes. J. Biol. Chem. 275, 6067–6070.

    CAS  PubMed  Google Scholar 

  • Cartier, J.L., Hershberger, P.A., and Friesen, P.D. (1994) Suppression of apoptosis in insect cells stably transfected with baculovirus p35: Dominant interference by N-terminal sequences p351-76. J. Virol. 68, 7728–7737.

    CAS  PubMed  Google Scholar 

  • Casciola-Rosen, L., Miller, D.K., Anhalt, G.J., and Rosen, A. (1994) Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269, 30757–30760.

    CAS  PubMed  Google Scholar 

  • Casciola-Rosen, L., Nicholson, D.W., Chong, T., Rowan, K.R., Thornberry, N.A., Miller, D.K., and Rosen, A. (1996) Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J. Exp. Med. 183, 1957–1964.

    Article  CAS  PubMed  Google Scholar 

  • Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T., Cannizzaro, L.A., Huebner, K., and Black, R.A. (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256, 97–100.

    CAS  PubMed  Google Scholar 

  • Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Dataa, P., Alnemri, E.S., and Shi, Y. (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769–780.

    Article  CAS  PubMed  Google Scholar 

  • Chandler, J.M., Cohen, G.M., and MacFarlane, M. (1998) Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver. J. Biol. Chem. 273, 10815–10818.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, D., Hideshima, T., Rosen, S., Reed, J.C., Kharbanda, S., and Anderson, K.C. (2001) Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J. Biol. Chem. 276, 24453–24456.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.R., Kori, R., John, B., and Tan, T.H. (2001) Caspase-mediated cleavage of actinbinding and SH3-domain-containing proteins cortactin, HS1, and HIP-55 during apoptosis. Biochem. Biophys. Res. Commun. 288, 981–989.

    Article  CAS  PubMed  Google Scholar 

  • Chinnaiyan, A.M., O’Rourke, K., Tewari, M., and Dixit, V.M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Chinnaiyan, A.M., O’Rourke, K., Yu, G.L., Lyons, R.H., Garg, M., Duan, D.R., Xing, L., Gentz, R., Ni, J., and Dixit, V.M. (1996) Signal transduction by DR3, a death domaincontaining receptor related to TNFR-1 and CD95. Science 274, 990–992.

    Article  CAS  PubMed  Google Scholar 

  • Chiou, S.-K., and White, E. (1998) Inhibition of ICE-like proteases inhibits apoptosis and increases virus production during adenovirus infection. Virology 244, 108–118.

    Article  CAS  PubMed  Google Scholar 

  • Clem, R.J., Fechheimer, M., and Miller, L.K. (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390.

    CAS  PubMed  Google Scholar 

  • Clem, R.J., and Miller, L.K. (1994) Control of programmed cell death by the baculovirus genes p35 and iap. Mol. Cell. Biol. 14, 5212–5222.

    CAS  PubMed  Google Scholar 

  • Coleman, M.L., Sahai, E.A., Yeo, M., Bosch, M., Dewar, A., and Olson, M.F. (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 3, 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Cory, S., and Adams, J.M. (2002) The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–656.

    Article  CAS  PubMed  Google Scholar 

  • Creagh, E.M., and Martin, S.J. (2001) Caspases: cellular demolition experts. Biochem. Soc. Tran. 29, 696–702.

    CAS  Google Scholar 

  • Crook, N.E., Clem, R.J., and Miller, L.K. (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174.

    CAS  PubMed  Google Scholar 

  • Crouch, D.H., Fincham, V.J., and Frame, M.C. (1996) Targeted proteolysis of focal adhesion kinase pp125 FAK during c-MYC-induced apoptosis is suppressed by integrin signaling. Oncogene 12, 2689–2696.

    CAS  PubMed  Google Scholar 

  • Cryns, V.L., Bergeron, L., Zhu, H., Li, H., and Yuan, J. (1996) Specific cleavage of a-fodrin during Fas-and Tumor necrosis factor-induced apoptosis is mediated by an interleukin-1β-converting enzyme/Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease. J. Biol. Chem. 271, 31277–31282.

    CAS  PubMed  Google Scholar 

  • Datta, R., Kojima, H., Banach, D., Bump, N.J., Talanian, R.V., Alnemri, E.S., Weichselbaum, R.R., Wong, W.W., and Kufe, D.W. (1997a) Activation of a CrmA-insensitive, p35-sensitive pathway in ionizing radiation-induced apoptosis. J. Biol. Chem. 272, 1965–1969.

    Article  CAS  PubMed  Google Scholar 

  • Datta, R., Kojima, H., Yoshida, K., and Kufe, D. (1997b) Caspase-3-mediated cleavage of protein kinase C è in induction of apoptosis. J. Biol. Chem. 272, 20317–20320.

    Article  CAS  PubMed  Google Scholar 

  • Deveraux, Q.L., Roy, N., Stennicke, H.R., Van Arsdale, T., Zhou, Q., Srinivasula, S.M., Alnemri, E.S., Salvesen, G.S., and Reed, J.C. (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223.

    Article  CAS  PubMed  Google Scholar 

  • Deveraux, Q.L., Takahashi, R., Salvesen, G.S., and Reed, J.C. (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304.

    CAS  PubMed  Google Scholar 

  • DeZongotita, V.M., Schmelzer, A.E., and Miller, W.M. (2002) Characterization of hybridoma cell responses to elevated pCO2 and osmolality: Intracellular pH, cell size, apoptosis, and metabolism. Biotechnol. Bioeng. 77, 369–380.

    Google Scholar 

  • Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Du, Q., Lehavi, D., Faktor, O., Qi, Y., and Chejanovsky, N. (1999) Isolation of an apoptosis suppressor gene of the Spodoptera littoralis nucleopolyhedrovirus. J. Virol. 73, 1278–1285.

    CAS  PubMed  Google Scholar 

  • Duan, H., Chinnaiyan, A.M., Hudson, P.L., Wing, J.P., He, W.-W., and Dixit, V.M. (1996a) ICE-LAP3, a novel mammalian homologue of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas-and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 271, 1621–1625.

    Article  CAS  PubMed  Google Scholar 

  • Duan, H., Orth, K., Chinnaiyan, A.M., Poirier, G.G., Froelich, C.J., He, W.-W., and Dixit, V.M. (1996b) ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J. Biol. Chem. 271, 16720–16724.

    Article  CAS  PubMed  Google Scholar 

  • Duckett, C.S., Li, F., Wang, Y., Tomaselli, K.J., Thompson, C.B., and Armstrong, R.C. (1998) Human IAP-like protein regulates programmed cell death downstream of Bcl-XL and cytochrome c. Mol. Cell. Biol. 18, 608–615.

    CAS  PubMed  Google Scholar 

  • Duckett, C.S., Nava, V.E., Gedrich, R.W., Clem, R.J., Van Dongen, J.L., Gilfillan, M.C., Shiels, H., Hardwick, J.M., and Thompson, C.B. (1996) A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15, 2685–2694.

    CAS  PubMed  Google Scholar 

  • Eckhart, L., Ban, J., Fischer, H., and Tschachler, E. (2000) Caspase-14: analysis of gene structure of mRNA expression during keratinocyte differentiation. Biochem. Biophys. Res. Commun. 277, 655–659.

    Article  CAS  PubMed  Google Scholar 

  • Eddins, M.J., Lemongello, D., Friesen, P.D., and Fisher, A.J. (2002) Crystallization and lowresolution structure of an effector-caspase/P35 complex: similarities and differences to an initiator-caspase/P35 complex. Acta Crystallogr. D Biol. Crystallogr. 58, 299–302.

    Article  PubMed  Google Scholar 

  • Ekert, P.G., Silke, J., Hawkins, C.J., Verhagen, A.M., and Vaux, D.L. (2001) DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J. Cell. Biol. 152, 483–490.

    Article  CAS  PubMed  Google Scholar 

  • Ekert, P.G., Silke, J., and Vaux, D.L. (1999) Inhibition of apoptosis and clonogenic survival of cells expressing crmA variants: optimal caspase substrates are not necessarily optimal inhibitors. EMBO J. 18, 330–338.

    Article  CAS  PubMed  Google Scholar 

  • Emoto, Y., Manome, Y., Meinhardt, G., Kisaki, H., Kharbanda, S., Robertson, M., Ghayur, T., Wong, W.W., Kamen, R., Weichselbaum, R., and Kufe, D. (1995) Proteolytic activation of protein kinase Cd by an ICE-like protease in apoptotic cells. EMBO J. 14, 6148–6156.

    CAS  PubMed  Google Scholar 

  • Enari, M., Hug, H., and Nagata, S. (1995) Involvement of an ICE-like protease in Fasmediated apoptosis. Nature 375, 78–81.

    Article  CAS  PubMed  Google Scholar 

  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50.

    CAS  PubMed  Google Scholar 

  • Faucheu, C., Blanchet, A.-M., Collard-Dutilleul, V., Lalanne, J.-L., and Diu-Hercend, A. (1996) Identification of a cysteine protease closely related to interleukin-1β-converting enzyme. Eur. J. Biochem. 236, 207–213.

    Article  CAS  PubMed  Google Scholar 

  • Faucheu, C., Diu, A., Chan, A.W.E., Blanchet, A.-M., Miossec, C., Herve, F., Collard-Dutilleul, V., Gu, Y., Aldape, R.A., Lippke, J.A., Rocher, C., Su, M.S.-S., Livingston, D.J., Hercend, T., and Lalanne, J.-L. (1995) A novel human protease similar to the interleukin-1β converting enzyme induces apoptosis in transfected cells. EMBO J. 14, 1914–1922.

    CAS  PubMed  Google Scholar 

  • Fernandes-Alnemri, T., Armstrong, R.C., Krebs, J., Srinivasula, S.M., Wang, L., Bullrich, F., Fritz, L.C., Trapani, J.A., Tomaselli, K.J., Litwack, G., and Alnemri, E.S. (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA 93, 7464–7469.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes-Alnemri, T., Litwack, G., and Alnemri, E.S. (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1â-converting enzyme. J. Biol. Chem. 269, 30761–30764.

    CAS  PubMed  Google Scholar 

  • Fernandes-Alnemri, T., Litwack, G., and Alnemri, E.S. (1995a) Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease family. Cancer Res. 55, 2737–2742.

    CAS  PubMed  Google Scholar 

  • Fernandes-Alnemri, T., Takahashi, A., Armstrong, R., Krebs, J., Fritz, L., Tomaselli, K.J., Wang, L., Yu, Z., Croce, C.M., Salvesen, G., Earnshaw, W.C., Litwack, G., and Alnemri, E.S. (1995b) Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res. 55, 6045–6052.

    CAS  PubMed  Google Scholar 

  • Fox S. 2001. Capacity crunch in contract manufacturing. Gen. Eng. News 21, 13.

    Google Scholar 

  • Franek, F. (1995) Starvation-induced programmed cell death of hybridoma cells: Prevention by amino acid mixtures. Biotechnol. Bioeng. 45, 86–90.

    CAS  Google Scholar 

  • Friesen, P.D., and Miller, L.K. (1987) Divergent transcription of early 35-and 94-kilodalton protein genes encoded by the HindIII K genome fragment of the baculovirus Autographa californica nuclear polyhedrosis virus. J. Virol. 61, 2264–2272.

    CAS  PubMed  Google Scholar 

  • Galande, S., Dickinson, L.A., Mian, I.S., Sikorska, M., and Kohwi-Shigematsu, T. (2001) SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol. Cell. Biol. 21, 5591–5604.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Calvo, M., Peterson, E.P., Leiting, B., Ruel, R., Nicholson, D.W., and Thornberry, N.A. (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273, 32608–32613.

    Article  CAS  PubMed  Google Scholar 

  • Geley, S., Hartmann, B.L., Kapelari, K., Egle, A., Villunger, A., Heidacher, D., Greil, R., Auer, B., and Kofler, R. (1997) The interleukin 1â-converting enzyme inhibitor CrmA prevents Apo1/Fas-but not glucocorticoid-induced poly(ADP-ribose) polymerase cleavage and apoptosis in lymphoblastic leukemia cells. FEBS Lett. 402, 36–40.

    Article  CAS  PubMed  Google Scholar 

  • Germain, M., Affar, E.B., D’Amours, D., Dixit, V.M., Salvesen, G.S., and Poirier, G.G. (1999) Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J. Biol. Chem. 274, 28379–28384.

    Article  CAS  PubMed  Google Scholar 

  • Gervais, F.G., Thornberry, N.A., Ruffolo, S.C., Nicholson, D.W., and Roy, S. (1998) Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. J. Biol. Chem. 273, 17102–17108.

    CAS  PubMed  Google Scholar 

  • Ghayur, T., Hugunin, M., Talanian, R.V., Ratnofsky, S., Quinlan, C., Emoto, Y., Pandey, P., Datta, R., Huang, Y., Kharbanda, S., Allen, H., Kamen, R., Wong, W., and Kufe, D. (1996) Proteolytic activation of protein kinase C delta by an ICE/CED 3-like protease induced characteristics of apoptosis. J. Exp. Med. 184, 2399–2404.

    Article  CAS  PubMed  Google Scholar 

  • Gross, A., Yin, X.-M., Wang, K., Wei, M.C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S.J. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163.

    CAS  PubMed  Google Scholar 

  • Gurevich, R.M., Regula, K.M., and Kirshenbaum, L.A. (2001) Serpin protein CrmA suppresses hypoxia-mediated apoptosis of ventricular myocytes. Circulation 103, 1984–1991.

    CAS  PubMed  Google Scholar 

  • Hacker, G., Hawkins, C.J., Smith, K.G.C., and Vaux, D.L. (1996) Effects of viral inhibitors of apoptosis in models of mammalian cell death. Behring Inst. Mitt. 97, 118–126.

    PubMed  Google Scholar 

  • Hansen, G. (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol. Plant Microbe Interact. 13, 649–657.

    CAS  PubMed  Google Scholar 

  • Hay, B.A., Wassarman, D.A., and Rubin, G.M. (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  • Hay, B.A., Wolff, T., and Rubin, G.M. (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129.

    CAS  PubMed  Google Scholar 

  • Haviv, R., Lindenboim, L., Li, H., Yuan, J., and Stein, R. (1997) Need for caspases in apoptosis of trophic factor-deprived PC12 cells. J. Neurosci. Res. 50, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Hegde, R., Srinivasula, S.M., Zhang, Z., Wassell, R., Mukattash, R., Cilent, L., DuBois, G., Lazebnik, Y., Zervos, A.S., Fernandes-Alnemri, T., and Alnemri, E.S. (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277, 432–438.

    CAS  PubMed  Google Scholar 

  • Hershberger, P.A., LaCount, D.J., and Friesen, P.D. (1994) The apoptotic suppressor P35 is required early during baculovirus replication and is targeted to the cytosol of infected cells. J. Virol. 68, 3467–3477.

    CAS  PubMed  Google Scholar 

  • Hisanaga, K., Kure, S., Bredesen, D.E., Ikeda, Y., Kohsaka, S., and Sharp, F.R. (1995) Apoptotic cell death of a temperature-sensitive central neuronal cell line. Brain Res. 684, 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, H., Xiong, J., and Goeddel, D.V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-êB activation. Cell 81, 495–504.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, S.Y., Kaipia, A., McGee, E., Lomeli, M., and Hsueh, A.J.W. (1997) Bok is a proapoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc. Natl. Acad. Sci. USA 94, 12401–12406.

    CAS  PubMed  Google Scholar 

  • Hu, S., Snipas, S.J., Vincenz, C., Salvesen, G., and Dixit, V.M. (1998) Caspase-14 is a novel developmentally regulated protease. J. Biol. Chem. 273, 29648–29653.

    CAS  PubMed  Google Scholar 

  • Huang, H.k., Joazeiro, C.A.P., Bonfoco, E., Kamada, S., Leverson, J.D., and Hunter, T. (2000) The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275, 26661–26664.

    CAS  PubMed  Google Scholar 

  • Humke, E.W., Ni, J., and Dixit, V.M. (1998) ERICE, a novel FLICE-activatable caspase. J. Biol. Chem. 273, 15702–15707.

    Article  CAS  PubMed  Google Scholar 

  • Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., Bodmer, J.-L., Schroter, M., Burns, K., Mattman, C., Rimoldi, D., French, L.E., and Tschopp, J. (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195.

    CAS  PubMed  Google Scholar 

  • Janicke, R.U., Walker, P.A., Lin, X.Y., and Porter, A.G. (1996) Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J. 15, 6969–6978.

    CAS  PubMed  Google Scholar 

  • Jiang, C., Baehreacke, E.H., and Thummel, C.S. (1997) Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124, 4673–4683.

    CAS  PubMed  Google Scholar 

  • Kamens, J., Paskind, M., Hugunin, M., Talanian, R.V., Allen, H., Banach, D., Bump, N., Hackett, M., Johnston, C.G., Li, P., Mankovich, J.A., Terranova, M., and Ghayur, T. (1995) Identification and characterization of ICH-2, a novel member of the interleukin-1β-converting enzyme family of cysteine proteases. J. Biol. Chem. 270, 15250–15256.

    CAS  PubMed  Google Scholar 

  • Kamita, S.G., Majima, K., and Maeda, S. (1993) Identification and characterization of the p35 gene of Bombyx mori nuclear polyhedrosis virus that prevents virus-induced apoptosis. J. Virol. 67, 455–463.

    CAS  PubMed  Google Scholar 

  • Kang, S.-J., Wang, S., Hara, H., Peterson, E.P., Namura, S., Amin-Hanjani, S., Huang, Z., Srinivasan, A., Tomaselli, K.J., Thornberry, N.A., Moskowitz, M.A., and Yuan, J. (2000) Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under physiological conditions. J. Cell. Biol. 149, 613–622.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann, S.H., and Hengartner, M.O. (2001) Programmed cell death: alive and well in the new millennium. Trends Cell. Biol. 11, 526–534.

    Article  CAS  PubMed  Google Scholar 

  • Kayalar, C., Ord, T., Testa, M.P., Zhong, L.T., and Bredesen, D.E. (1995) Cleavage of actin by interleukin 1 beta-converting enzyme to reverse DNase I inhibition. Proc. Natl. Acad. Sci. USA 93, 2234–2238.

    Google Scholar 

  • Kearns, M.J. (1990) Integrated design for mammalian cell culture. Biotechnology 8, 409–413.

    CAS  PubMed  Google Scholar 

  • Kim, M.S., Kim, B.J., Woo, H.N., Kim, K.W., Kim, K.B., Kim, I.K., and Jung, Y.K. (2000) Cadmium induces caspase-mediated cell death: suppression by Bcl-2. Toxicology 145, 27–37.

    Article  CAS  PubMed  Google Scholar 

  • King, P., and Goodbourn, S. (1998) STAT1 is inactivated by a caspase. J. Biol. Chem. 271, 8699–8704.

    Google Scholar 

  • Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., and Peter, M.E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588.

    CAS  PubMed  Google Scholar 

  • Kischkel, F.C., Lawrence, D.A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., and Ashkenazi, A. (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276, 46639–46646.

    Article  CAS  PubMed  Google Scholar 

  • Kojima, H., and Datta, R. (1996) Involvement of a CrmA-insensitive ICE/Ced-3-like protease in ceramide-induced apoptosis. Oncol. Res. 8, 497–501.

    CAS  PubMed  Google Scholar 

  • Komiyama, T., Ray, C.A., Pickup, D.J., Howard, A.D., Thornberry, N.A., Peterson, E.P., and Salvesen, G. (1994) Inhibition of interleukin-1â converting enzyme by the cowpox virus serpin CrmA. J. Biol. Chem. 269, 19331–19337.

    CAS  PubMed  Google Scholar 

  • Kook, S., Shim, S.R., Choi, S.J., Ahnn, J., Kim, J.I., Eom, S.H., Jung, Y.K., Paik, S.G., and Song, W.K. (2000) Caspase-mediated cleavage of p130cas in etoposide-induced apoptotic Rat-1 cells. Mol. Biol. Cell. 11, 929–939.

    CAS  PubMed  Google Scholar 

  • Koriyama, H., Kouchi, Z., Umeda, T., Saido, T.C., Momoi, T., Ishiura, S., and Suzuki, K. (1999) Proteolytic activation of protein kinase C delta and epsilon by caspase-3 in U937 cells during chemotherapeutic agent-induced apoptosis. Cell Signal. 11, 831–838.

    Article  CAS  PubMed  Google Scholar 

  • Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski, D.J., and Williams, L.T. (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294–298.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Kinoshita, M., Noda, M., Copeland, N.G., and Jenkins, N.A. (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1β-converting enzyme. Genes Dev. 8, 1613–1626.

    CAS  PubMed  Google Scholar 

  • Lane, J.D., Lucocq, J., Pryde, J., Barr, F.A., Woodman, P.G., Allan, V.J., and Lowe, M. (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J. Cell. Biol. 156, 495–509.

    Article  CAS  PubMed  Google Scholar 

  • Lazebnik, Y.A., Kaufman, S.H., Desnoyers, S., Poirier, G.G., and Earnshaw, W.C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteins with properties like ICE. Nature 371, 346–347.

    Article  CAS  PubMed  Google Scholar 

  • Lazebnik, Y.A., Takahashi, A., Moir, R.D., Goldman, R.D., Poirier, G.G., Kaufman, S.H., and Earnshaw, W.C. (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natl. Acad. Sci. USA 92, 9042–9046.

    CAS  PubMed  Google Scholar 

  • Lee, J.-C., and Chao, Y.-C. (1998) Apoptosis resulting from superinfection of Heliothis zea virus 1 is inhibited by p35 and is not required for virus interference. J. Gen. Virol. 79, 2293–2300.

    CAS  PubMed  Google Scholar 

  • Levkau, B., Garton, K.J., Ferri, N., Kloke, K., Nofer, J.-R., Baba, H.A., Raines, E.W., and Breithardt, G. (2001) XIAP induces cell-cycle arrest and activates nuclear factor-κB. Circ. Res. 88, 282–290.

    CAS  PubMed  Google Scholar 

  • Li, H., Zhu, H., Xu, C.-j., and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.

    Article  CAS  PubMed  Google Scholar 

  • Lin, G., Li, G., Granados, R.R., and Blissard, G.W. (2001) Stable cell lines expressing baculovirus P35: resistance to apoptosis and nutrient stress, and increased glycoprotein secretion. In Vitro Cell Dev. Biol. Anim. 37, 293–302.

    CAS  Google Scholar 

  • Lippke, J.A., Gu, Y., Sarnecki, C., Caron, P.R., and Su, M.S.-S. (1996) Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32. J. Biol. Chem. 271, 1825–1828.

    CAS  PubMed  Google Scholar 

  • Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Cherton-Horvat, G., Farahani, R., McLean, M., Ikeda, J., MacKenzie, A., and Korneluk, R.G. (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349–353.

    CAS  PubMed  Google Scholar 

  • Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86, 147–157.

    CAS  PubMed  Google Scholar 

  • Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184.

    CAS  PubMed  Google Scholar 

  • Liu, Z., Sun, C., Olejniczak, E.T., Meadows, R.P., Betz, S.F., Oost, T., Herrmann, J., Wu, J.C., and Fesik, S.W. (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408, 1004–2008.

    CAS  PubMed  Google Scholar 

  • Luo, X., Budiharjo, H., Zou, H., Slaughter, C., and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Madesh, M., Antonsson, B., Srinivasula, S.M., Alnemri, E.S., and Hajnoczky, G. (2002) Rapid kinetics of tBID-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J. Biol. Chem. 277, 5651–5659.

    Article  CAS  PubMed  Google Scholar 

  • Marsden, V.S., O’Connor, L., O’Reilly, L.A., Silke, J., Metcalf, D., Ekert, P.G., Huang, D.C.S., Cecconi, F., Kuida, K., Tomaselli, K.J, Roy, S., Nicholson, D.W., Vaux, D.L., Bouillet, P., Adams, J.M, and Strasser, A. (2002) Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419, 634–637.

    Article  CAS  PubMed  Google Scholar 

  • Marsters, S.A., Pitti, R.M., Donahue, C.J., Ruppert, S., Bauer, K.D., and Ashkenazi, A. (1996a) Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Curr. Biol. 6, 750–752.

    CAS  PubMed  Google Scholar 

  • Marsters, S.A., Sheridan, J.P., Donahue, C.J., Pitti, R.M., Gray, C.L., Goddard, A.D., Bauer, K.D., and Ashkenazi, A. (1996b) Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-κB. Curr. Biol. 6, 1669–1676.

    CAS  PubMed  Google Scholar 

  • Martin, D.A., Siegel, R.M., Zheng, L., and Lenardo, M.J. (1998) Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHα1) death signal. J. Biol. Chem. 273, 4345–4349.

    CAS  PubMed  Google Scholar 

  • Martin, S.J., O’Brien, G.A., Nishioka, W.K., McGahon, A.J., Mahboubi, A., Saido, T.C., and Green, D.R. (1995) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem. 270, 6425–6428.

    CAS  PubMed  Google Scholar 

  • Martinou, I., Fernandez, P.-A., Missotten, M., White, E., Allet, B., Sadoul, R., and Martinou, J.-C. 1995. Viral proteins E1B19K and p35 protect sympathetic neurons from cell death induced by NGF deprivation. J. Cell. Biol. 128, 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Martins, L.M., Iaccarino, I., Tenev, T., Gschmeissner, S., Totty, N.F., Lemoine, N.R., Savopoulos, J., Gray, C.W., Creasy, C.L., Dingwall, C., and Downward, J. (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 277, 439–444.

    Article  CAS  PubMed  Google Scholar 

  • Mashima, T., Naito, M., Noguchi, K., Miller, D.K., Nicholson, D.W., and Tsuruo, T. (1997) Actin cleavage by CPP-32/Apopain during the development of apoptosis. Oncogene 14, 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  • Mastrangelo, A.M, Hardwick, J.M., and Betenbaugh, M.J. (1996) Bcl-2 inhibits apoptosis and extends recombinant protein production in cells infected with Sindbis virus vectors. Cytotechnology 22, 169–178.

    Article  CAS  Google Scholar 

  • Mastrangelo, A.J., Hardwick, J.M., Bex, F., and Betenbaugh, M.J. (2000) Part I. Bcl-2 and Bcl-xL limit apoptosis upon infection with alphavirus vectors. Biotechnol. Bioeng. 67, 544–554.

    CAS  PubMed  Google Scholar 

  • Mastrangelo, A.M., Zou, S., Hardwick, J.M., and Betenbaugh, M.J. (1999) Antiapoptosis chemicals prolong productive lifetimes of mammalian cells upon Sindbis virus infection. Biotechnol. Bioeng. 65, 298–305.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, A., Neupert, W., and Lill, R. (1995) Translocation of apocytochrome c across the outer membrane of mitochondria. J. Biol. Chem. 270, 12390–12397.

    CAS  PubMed  Google Scholar 

  • McKenna, S.L., and Cotter, T.G. (2000) Inhibition of caspase activity delays apoptosis in a transfected NS/0 myeloma cell line. Biotechnol. Bioeng. 67, 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Medema, J.P., Scaffidi, C., Kischkel, F.C., Shevchenko, A., Mann, M., Krammer, P.H., and Peter, M.E. (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794–2804.

    Article  CAS  PubMed  Google Scholar 

  • Memon, S.A., Moreno, M.B., Petrak, D., and Zacharchuk, C.M. (1995) Bcl-2 blocks glucocorticoid-but not Fas-or activation-induced apoptosis in a T cell hybridoma. J. Immunol. 155, 4644–4652.

    CAS  PubMed  Google Scholar 

  • Mercille, S., and Massie, B. (1994a) Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 44, 1140–1154.

    Article  CAS  Google Scholar 

  • Mercille, S., and Massie, B. (1994b) Induction of apoptosis in oxygen-deprived cultures of hybridoma cells. Cytotechnology 15, 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Miura, M., Friedlander, R.M., and Yuan, J. (1995) Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc. Natl. Acad. Sci. USA 92, 8318–8322.

    CAS  PubMed  Google Scholar 

  • Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A., and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660.

    Article  CAS  PubMed  Google Scholar 

  • Morishima, N., Okano, K., Shibata, T., and Maeda, S. (1998) Homologous p35 proteins of baculoviruses show distinctive anti-apoptotic activities which correlate with the apoptosis-inducing activity of each virus. FEBS Lett. 427, 144–148.

    Article  CAS  PubMed  Google Scholar 

  • Munday, N.A., Vaillancourt, J.P., Ali, A., Casano, F.J., Miller, D.K., Molineaux, S.M., Yamin, T.-T., Yu, V.L., and Nicholson, D.W. (1995) Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J. Biol. Chem. 270, 15870–15876.

    CAS  PubMed  Google Scholar 

  • Muzio, M., Chinnaiyan, A.M, Kischkel, F.C., O’Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., Gentz, R., Mann, M., Krammer, P.H., Peter, M.E., and Dixit, V.M. (1996) FLICE, a novel FADD-homologous ICE/Ced-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827.

    Article  CAS  PubMed  Google Scholar 

  • Muzio, M., Salvesen, G.S., and Dixit, V.M. (1997) FLICE induced apoptosis in a cell-free system. J. Biol. Chem. 272, 2952–2956.

    CAS  PubMed  Google Scholar 

  • Na, S., Chuang, T.H., Cunningham, A., Turi, T.G., Hanke, J.H., Bokoch, G.M., and Danley, D.E. (1996) D4-GDI a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J. Biol. Chem. 271, 11209–11213.

    CAS  PubMed  Google Scholar 

  • Nagane, M., Pan, G., Weddle, J.J., Dixit, V.M., Cavenee, W.K., and Huang, H.J. (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. 60, 847–853.

    CAS  PubMed  Google Scholar 

  • Nava, V.E., Rosen, A., Veliuona, M.A., Clem, R.J., Levine, B., and Hardwick, J.M. (1998) Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J. Virol. 72, 452–459.

    CAS  PubMed  Google Scholar 

  • Nicholson, D.W., Ali, A., Thornberry, N.A., Vaillancourt, J.P., Ding, C.K., Gallant, M., Gareau, Y., Griffin, P.R., Labelle, M., Lazebnik, Y.A., Munday, N.A., Raju, S.M., Smulson, M.E., Yamin, T.-T., Yu, V.L., and Miller, D.K. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Orth, K., Chinnaiyan, A.M., Garg, M., Froelich, C.J., and Dixit, V.M. (1996) The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 271, 16443–16446.

    CAS  PubMed  Google Scholar 

  • Osman, J.J., Birch, J., and Varley, J. (2001) The response to GS-NS0 myeloma cells to pH shifts and pH perturbations. Biotechnol. Bioeng. 75, 63–73.

    Article  CAS  PubMed  Google Scholar 

  • Pan, G., Humke, E.W., and Dixit, V.M. (1998) Activation of caspases triggered by cytochrome c in vitro. FEBS Lett. 426, 151–154.

    Article  CAS  PubMed  Google Scholar 

  • Paszty, K., Verma, A.K., Padanyi, R., Filoteo, A.G., Penniston, J.T., and Enydei, A. (2002) Plasma membrane Ca2+ATPase isoform 4b is cleaved and activated by caspase-3 during the early phase of apoptosis. J. Biol. Chem. 277, 6822–6829.

    CAS  PubMed  Google Scholar 

  • Qi, Y., Liu, Q., Peng, Y., Li, L., Pei, Z., and Liu, Y. (2001) Identification of apoptosis-inhibiting gene in Leucania separata nuclear polyhedrosis virus. Arch. Virol. 146, 2149–2163.

    Article  CAS  PubMed  Google Scholar 

  • Quan, L.T., Caputo, A., Bleackley, R.C., Pickup, D.J., and Salvesen, G.S. (1995) Granzyme B is inhibited by the cowpox virus serpin cytokine response modifier A. J. Biol. Chem. 270, 10377–10379.

    Article  CAS  PubMed  Google Scholar 

  • Rabizadeh, S., LaCount, D.J., Friesen, P.D., and Breeds, D.E. (1993) Expression of the baculovirus p35 gene inhibits mammalian neural cell death. J. Neurochem. 61, 2318–2321.

    CAS  PubMed  Google Scholar 

  • Rao, L., Perez, D., and White, E. (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell. Biol. 135, 1441–1455.

    Article  CAS  PubMed  Google Scholar 

  • Rauen, U., Polzar, B., Stephan, H., Mannherz, H.G., and de Groot, H. (1999) Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J. 13, 155–168.

    CAS  PubMed  Google Scholar 

  • Ray, C.A., Black, R.A., Kronheim, S.R., Greenstreet, T.A., Sleath, P.R., Salvesen, G.S., and Pickup, D.J. (1992) Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell 69, 597–604.

    Article  CAS  PubMed  Google Scholar 

  • Rehemtulla, A., Hamilton, C.A., Chinnaiyan, A.M., and Dixit, V.M. (1997) Ultraviolet radiation-induced apoptosis is mediated by activation of CD-95 (Fas/APO-1). J. Biol. Chem. 272, 25783–25786.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, D.L., Merrison, W., MacFarlane, M., and Cohen, G.M. (2001) The inhibitor of apoptosis protein-binding domain of Smac is not essential for its pro-apoptotic activity. J. Cell. Biol. 153, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Rudel, T., and Bokoch, G.M. (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1574.

    Article  CAS  PubMed  Google Scholar 

  • Sakahira, H., Enari, M., and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96–99.

    CAS  PubMed  Google Scholar 

  • Saleh, A., Srinivasula, S.M., Acharya, S., Fishel, R., and Alnemri, E.S. (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941–17945.

    Article  CAS  PubMed  Google Scholar 

  • Sauerwald, T.M., Betenbaugh, M.J., and Oyler, G.A. A study of caspase inhibitors for limiting death in mammalian cell culture.” Biotechnol. Bioeng., in press.

    Google Scholar 

  • Sauerwald, T.M., Betenbaugh, M.J., and Oyler, G.A. (2002) Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol. Bioeng. 77, 704–716.

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin, K.M., Krammer, P.H., and Peter, M.E. (1998) Two CD95 (Apo-1/Fas) signaling pathways. EMBO J. 17, 1675–1687.

    Article  CAS  PubMed  Google Scholar 

  • Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J. (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell. Biol. 3, 346–352.

    Article  CAS  PubMed  Google Scholar 

  • Seshagiri, S., and Miller, L.K. (1997) Baculovirus inhibitors of apoptosis (IAPs) block activation of Sf-caspase-1. Proc. Natl. Acad. Sci. USA 94, 13606–13611.

    Article  CAS  PubMed  Google Scholar 

  • Seol, D.W., and Billiar, T.R. (1999) A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J. Biol. Chem. 274, 2072–2076.

    CAS  PubMed  Google Scholar 

  • Sgorbissa, A., Benetti, R., Marzinotto, S., Schneider, C., and Brancolini, C. (1999) Caspase-3 and caspase-7 but not caspase-6 cleave Gas2 in vitro: implications for microfilament reorganization during apoptosis. J. Cell. Sci. 112, 4475–4482.

    CAS  PubMed  Google Scholar 

  • Shimura, M., Ishizaka, Y., Yuo, A., Oshima, M., Sasaki, T., and Takaku, F. (1997) Characterization of room temperature induced apoptosis in HL-60. FEBS Lett. 417, 379–384.

    Article  CAS  PubMed  Google Scholar 

  • Simons, M., Beinroth, S., Gleichmann, M., Liston, P., Korneluk, R.G., MacKenzie, A.E., Bahr, M., Klockgether, T., Robertson, G.S., Weller, M., and Schulz, J.B. (1999) Adenovirus-mediated gene transfer of inhibitors of apoptosis proteins delays apoptosis in cerebellar granule neurons. J. Neurochem. 72, 292–301.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R.P., Finka, G., Emery, A.N., and Al-Rubeai, M. (1997) Apoptosis and its control in cell culture systems. Cytotechnology 23, 87–93.

    Article  Google Scholar 

  • Slee, E.A., Adrain, C., and Martin, S.J. (2001) Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276, 7320–7326.

    Article  CAS  PubMed  Google Scholar 

  • Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.-G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., Green, D.R., and Martin, S.J. (1999) Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J. Cell. Biol. 144, 281–292.

    Article  CAS  PubMed  Google Scholar 

  • Song, Q., Lees-Miller, S.P., Kumar, S., Zhang, Z., Chan, D.W., Smith, G.C., Jackson, S.P., Alnemri, E.S., Litwack, G., Khanna, K.K., and Lavin, M.F. (1996) DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 15, 3238–3246.

    CAS  PubMed  Google Scholar 

  • Srinivasula, S.M., Ahmad, M., Fernandes-Alnemri, T., and Alnemri, E.S. (1998) Autoactivation of procaspase-9 by Apaf-1 mediated oligomerization. Mol. Cell. 1, 949–957.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasula, S.M., Datta, P., Fan, X.-J., Fernandes-Alnemri, T., Huang, Z., and Alnemri, E.S. (2000) Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem. 275, 36152–36157.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasula, S.M., Fernandes-Alnemri, T., Zangrilli, J., Robertson, N., Armstrong, R.C., Wang, L., Trapani, J.A., Tomaselli, K.J., Litwack, G., and Alnemri, E.S. (1996) The Ced-3/Interleukin 1β converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2α are substrates for the apoptotic mediator CPP32. J. Biol. Chem. 271, 27099–27106.

    CAS  PubMed  Google Scholar 

  • Srinivasula, S.M., Hegde, R., Saleh, A., Datta, P., Shiozaki, E., Lee, R.-A., Robbins, P.D., Fernandes-Alnemri, T., Shi, Y., and Alnemri, E.S. (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.

    Article  CAS  PubMed  Google Scholar 

  • Stroh, C., and Schulze-Osthoff, K. (1998) Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ. 5, 997–1000.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto, A., Friesen, P.D., and Rothman, J.H. (1994) Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode Caenorhabditis elegans. EMBO J. 13, 2023–2028.

    CAS  PubMed  Google Scholar 

  • Suliman, A., Lam, A., Datta, R., and Srivastava, R.K. (2001) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and-independent pathways. Oncogene 20, 2122–2133.

    Article  CAS  PubMed  Google Scholar 

  • Sun, C., Cai, M., Gunasekera, A.H., Meadows, R.P., Wang, H., Chen, J., Zhang, H., Wu, W., Xu, N., Ng, S.-C., and Fesik, S.W. (1999a) NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822.

    CAS  PubMed  Google Scholar 

  • Sun, C., Cai, M., Meadows, R.P., Xu, N., Gunasekera, A.H., Herrman, J., Wu, J.C., and Fesik, S.W. (2000) NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem. 275, 33777–33781.

    CAS  PubMed  Google Scholar 

  • Sun, X.-M., Macfarlane, M., Zhuang, J., Wolf, B., Green, D., and Cohen, G. (1999b) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J. Biol. Chem. 274, 5053–5060.

    CAS  PubMed  Google Scholar 

  • Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001a) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, Y., Nakabayashi, Y., Nakata, K., Reed, J.C., and Takahashi, R. (2001b) X-linked inhibitor of apoptosis protein (XIAP) inhibits caspases-3 and-7 in distinct modes. J. Biol. Chem. 276, 27058–27063.

    CAS  PubMed  Google Scholar 

  • Suzuki, Y., Nakabayashi, Y., and Takahashi, R. (2001c) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl. Acad. Sci. USA 98, 8662–8667.

    CAS  PubMed  Google Scholar 

  • Takahashi, A., Alnemri, E.S., Lazebnik, Y.A., Fernandes-Alnemri, T., Litwack, G., Moir, R.D., Goldman, R.D., Poirier, G.G., Kaufmann, S.H., and Earnshaw, W.C. (1996) Cleavage of lamin A by Mch2α but not CPP32: multiple interleukin 1β-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc. Natl. Acad. Sci. USA 93, 8395–8400.

    CAS  PubMed  Google Scholar 

  • Takahashi, A., Hirata, H., Yonehara, S., Imai, Y., Lee, K.-K., Moyer, R.W., Turner, P.C., Mesner, P.W., Okazaki, T., Sawai, H., Kishi, S., Yamamoto, K., Okuma, M., and Sasada, M. (1997) Affinity labeling displays the stepwise activation of ICE-related proteases by Fas, staurosporine, and CrmA-sensitive caspase-8. Oncogene 14, 2741–2752.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, R., Deveraux, Q., Tamm, I., Welsh, K., Assa-Munt, N., Salvesen, G.S., and Reed, J.C. (1998) A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273, 7787–7790.

    CAS  PubMed  Google Scholar 

  • Tewari, M., and Dixit, V.M. (1995) Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270, 3255–3260.

    Article  CAS  PubMed  Google Scholar 

  • Tewari, M., Quan, L., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salvesen, G.S., and Dixit, V.M. (1995) Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–809.

    Article  CAS  PubMed  Google Scholar 

  • Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., Wlliston, K.O., Ayala, J.M., Casano, F.J., Chin, J., Ding, G.J.-F., Egger, L.A., Gaffney, E.P., Limjuco, G., Palyha, O.C., Raju, S.M., Rolando, A.M., Salley, J.P., Yamin, T.-T., Lee, T.D., Shively, J.E., MacCross, M., Mumford, R.A., Schmidt, J.A., and Tocci, M.J. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768–774.

    Article  CAS  PubMed  Google Scholar 

  • Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T., and Nicholson, D.W. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272, 17907–17911.

    Article  CAS  PubMed  Google Scholar 

  • Turner, S., Kenshole, B., and Ruby, J. (1999) Viral modulation of the host response via crmA/SPI-2 expression. Immunol. Cell. Biol. 77, 236–241.

    Article  CAS  PubMed  Google Scholar 

  • Ubeda, M., and Habener, J.F. (1997) The large subunit of the DNA replication complex C (DSEB/RF-C140) cleaved and inactivated by caspase-3 (CPP32/YAMA) during Fas-induced apoptosis. J. Biol. Chem. 272, 19562–19568.

    Article  CAS  PubMed  Google Scholar 

  • Van de Craen, M., Berx, G., Van den Brande, I., Fiers, W., Declercq, W., and Vandenabeele, P. (1999) Proteolytic cleavage of beta-catenin by caspases: an in vitro analysis. FEBS Lett. 458, 167–170.

    PubMed  Google Scholar 

  • Van de Craen, M., Vandenabeele, P., Declercq, W., Van den Brande, I., Van Loo, G., Molemans, F., Schotte, P., Van Criekinge, W., Beyaert, R., and Fiers, W. (1997) Characterization of seven murine caspase family members. FEBS Lett. 403, 61–69.

    PubMed  Google Scholar 

  • Van de Craen, M., Van Loo, G., Declercq, W., Schotte, P., Van den Brande, I., Mandruzzato, S., van der Bruggen, P., Fiers, W., and Vandenabeele, P. (1998a) Molecular cloning and identification of murine caspase-8. J. Mol. Biol. 284, 1017–1026.

    PubMed  Google Scholar 

  • Van de Craen, M., Van Loo, G., Pype, S., Van Criekinge, W., Van den brande, I., Molemans, F., Fiers, W., Declercq, W., and Vandenabeele, P. (1998b) Identification of a new caspase homologue: caspase-14. Cell Death Differ. 5, 838–846.

    PubMed  Google Scholar 

  • van Loo, G., van Gurp, M., Depuydt, B., Srinivasula, S.M., Rodriguez, I., Alnemri, E.S., Gevaert, K., Vandekerckhove, J., Declercq, W., and Vandenabeele, P. (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 9, 20–26.

    PubMed  Google Scholar 

  • Vekrellis, K., McCarthy, M.J., Watson, A., Whitfield, J., Rubin, L.L., and Ham, J. (1997) Bax promotes neuronal cell death and is downregulated during the development of the nervous system. Development 124, 1239–1249.

    CAS  PubMed  Google Scholar 

  • Verhagen, A.M., Coulson, E.J., and Vaux, D.L. (2001) Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol. 2, 3009.1–3009.10.

    Article  Google Scholar 

  • Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E., Moritz, R.L., Simpson, R.J., and Vaux, D.L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53.

    Article  CAS  PubMed  Google Scholar 

  • Verhagen, A.M., Silke, J., Ekert, P.G., Pakusch, M., Kaufman, H., Connolly, L.M., Day, C.L., Tikoo, A., Burke, R., Wrobel, C., Moritz, R.L., Simpson, R.J., and Vaux, D.L. (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445–454.

    CAS  PubMed  Google Scholar 

  • Vier, J., Furmann, C., and Hacker, G. (2000) Baculovirus protein does not inhibit caspase-9 in a cell-free system of apoptosis. Biochem. Biophys. Res. Commun. 276, 855–861.

    Article  CAS  PubMed  Google Scholar 

  • Vincenz, C., and Dixit, V.M. (1997) Fas-associated death domain protein inerleukin-1β-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD-95-and p55-mediated death signaling. J. Biol. Chem. 272, 6578–6583.

    Article  CAS  PubMed  Google Scholar 

  • Voelkel-Johnson, C., Entingh, A.J., Wold, W.S., Gooding, L.R., and Laster, S.M. (1995) Activation of intracellular proteases is an early event in TNF-induced apoptosis. J. Immunol. 154, 1707–1716.

    CAS  PubMed  Google Scholar 

  • Walter, B.N., Huang, Z., Jakobi, R., Tuazon, P.T., Alnemri, E.S., Litwack, G., Traugh, J.A. (1998) Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity. J. Biol. Chem. 273, 28733–29739.

    CAS  PubMed  Google Scholar 

  • Wang, J., Chun, H.J., Wong, W., Spencer, D.M., and Lenardo, M.J. (2001) Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl. Acad. Sci. USA 98, 13884–13888.

    CAS  PubMed  Google Scholar 

  • Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J. (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78, 739–750.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Miura, M., Jung, Y.-k., Zhu, H., Gagliardini, V., Shi, L., Grennberg, A.H., and Yuan, J. (1996a) Identification and characterization of Ich-3, a member of the interleukin-1β converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J. Biol. Chem. 271, 20580–20587.

    CAS  PubMed  Google Scholar 

  • Wang, X., Zelenski, N.G., Yang, J., Sakai, J., Brown, M.S., and Goldstein, J.L. (1996b) Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 15, 1012–1020.

    CAS  PubMed  Google Scholar 

  • Wolf, B.B., Schuler, M., Echeverri, F., Green, D.R. (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation factor-45/inhibitor of caspase-activated Dnase inactivation. J. Biol. Chem. 274, 30651–30656.

    CAS  PubMed  Google Scholar 

  • Wu, G., Chai, J., Suber, T.L., Wu, J.-W., Du, C., Wang, X., and Shi, Y. (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012.

    CAS  PubMed  Google Scholar 

  • Xue, D., and Horvitz, H.R. (1995) Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377, 248–251.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Fang, S., Jensen, J.P., Weissman, A.M., and Ashwell, J.D. (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi, M., Sekiguchi, T., Hara, N., and Nishimoto, T. (2000) Inhibition of N-linked glycosylation causes apoptosis in hamster BHK21 cells. Biochem. Biophys. Res. Commun. 276, 965–969.

    Article  CAS  PubMed  Google Scholar 

  • You, M., Ku, P.-T., Hrdlickova, R., and Bose Jr, H.R. (1997) ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-rel oncoprotein. Mol. Cell. Biol. 17, 7328–7341.

    CAS  PubMed  Google Scholar 

  • Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.D., Zhang, X.Y., Gray, C.P., Nguyen, T., and Hersey, P. (2001) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by Smac/DIABLO release from mitochondria. Cancer Res. 61, 7339–7348.

    CAS  PubMed  Google Scholar 

  • Zhou, Q., Krebs, J.F., Snipas, S.J., Price, A., Alnemri, E.S., Tomaselli, K.J., and Salvesen, G.S. (1998) Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37, 10757–10765.

    CAS  PubMed  Google Scholar 

  • Zhou, Q., Snipas, S., Orth, K., Muzio, M., Dixit, V.M., and Salvesen, G.S. (1997) Target protease specificity of the viral serpin CrmA. J. Biol. Chem. 272, 7797–7800.

    CAS  PubMed  Google Scholar 

  • Zoog, S.J., Bertin, J., and Friesen, P.D. (1999) Caspase inhibition by baculovirus P35 requires interaction between the reactive site loop and the β-sheet core. J. Cell. Biol. 274, 25995–26002.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Betenbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sauerwald, T.M., Betenbaugh, M.J. (2004). The Role of Caspases in Apoptosis and Their Inhibition in Mammalian Cell Culture. In: Al-Rubeai, M., Fussenegger, M. (eds) Cell Engineering. Cell Engineering, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2217-4_7

Download citation

Publish with us

Policies and ethics