Skip to main content

Ligand-Gated Ion Channels: Permeation and Activation1

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

  • 1831 Accesses

Abstract

Ligand-gated ion channels (LGICs) are fast-responding channels in which the receptor, which binds the activating molecule (the ligand), and the ion channel are part of the same nanomolecular protein complex. This chapter will describe the properties and functions of the nicotinic acetylcholine LGIC superfamily, which play a critical role in the fast chemical transmission of electrical signals between nerve cells at synapses and between nerve and muscle cells at endplates. All the processing functions of the brain and the resulting behavioral output depend on chemical transmission across such neuronal interconnections. To describe the properties of the channels of this LGIC superfamily,we will mainly use two examples of this family of channels: the excitatory nicotinic acetylcholine receptor (nAChR) and the inhibitory glycine receptor (GlyR) channels. In the chemical transmission of electrical signals, the arrival of an electrical signal at the synaptic terminal of a nerve causes the release of a chemical signal—a neurotransmitter molecule (the ligand, also referred to as the agonist). The neurotransmitter rapidly diffuses across the very narrow 20–40 nm synaptic gap between the cells and binds to the LGIC receptors in the membrane of the target (postsynaptic) cell and generates a new electrical signal in that cell (e.g., Kandel et al., 2000). How this chemical signal is converted into an electrical one depends on the fundamental properties of LGICs and the ionic composition of the postsynaptic cell and its external solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absalom, N.L., T.M. Lewis, W. Kaplan, K.D. Pierce, and P.R. Schofield. 2003. Role of charged residues in coupling ligand binding and channel activation in the extracellular domain of the glycine receptor. J. Biol. Chem. 278:50151–50157.

    Article  Google Scholar 

  • Akabas, M.H., C. Kaufmann, P. Archdeacon, and A. Karlin. 1994. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13:919–927.

    Article  Google Scholar 

  • Aidley, D.J., and P.R. Stanfield. 1996. Ion Channels: Molecules in Action. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Alexander, S.P., A. Mathie, and J.A. Peters. 2004. Guide to receptors and channels. Br. J. Pharmacol. 141:S1–S126.

    Article  Google Scholar 

  • Amin, J., and D.S. Weiss. 1993. GABAA receptor needs two homologous domains of the beta-subunit for activation by GABA but not by pentobarbital. Nature 366:565–569.

    Article  ADS  Google Scholar 

  • Auerbach, A. 2003. Life at the top: The transition state of AChR gating. Sci. STKE. 2003:re11.

    Article  Google Scholar 

  • Barry, P.H. 2006. The reliability of relative anion-cation permeabilities deduced from reversal (dilution) potential measurements in ion channel studies. Cell Biochem. Biophys. 46(2) (October, in press).

    Google Scholar 

  • Barry, P.H., and P.W. Gage. 1984. Ionic selectivity of channels at the end plate. Curr.Top. Membr. Transp. 21:1–51.

    Google Scholar 

  • Barry, P.H., and J.W. Lynch. 2005. Ligand-gated channels. IEEE Trans. Nanobiosci. 4:70–80.

    Article  Google Scholar 

  • Bormann, J., N. Rundstrom, H. Betz, and D. Langosch. 1993. Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J. 12:3729–3737.

    Google Scholar 

  • Bouzat, C., F. Gumilar, G. Spitzmaul, H.L. Wang, D. Rayes, S.B. Hansen, P. Taylor, and S.M. Sine. 2004. Coupling of agonist binding to channel gating in an AChbinding protein linked to an ion channel. Nature 430:896–900.

    Article  ADS  Google Scholar 

  • Brejc, K.,W.J. van Dijk, R.V. Klaassen, M. Schuurmans, J. van der Oost, A.B. Smit, and T.K. Sixma. 2001. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276.

    Article  ADS  Google Scholar 

  • Carland, J.E., A.J. Moorhouse, P.H. Barry, G.A.R. Johnston, and M. Chebib. 2004. Charged residues at the 2′ position of human GABAC rho 1 receptors invert ion selectivity and influence open state probability. J. Biol. Chem. 279:54153–54160.

    Article  Google Scholar 

  • Celie, P.H., S.E. van Rossum-Fikkert, W.J. van Dijk, K. Brejc, A.B. Smit, and T.K. Sixma. 2004. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41:907–914.

    Article  Google Scholar 

  • Celie, P.H., I.E. Kasheverov, D.Y. Mordvintsev, R.C. Hogg, P. van Nierop, R. van Elk, S.E. van Rossum-Fikkert, M.N. Zhmak, D. Bertrand, V. Tsetlin, T.K. Sixma, and A.B. Smit. 2005. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant. Nat. Struct. Mol. Biol. 2:582–588.

    Article  Google Scholar 

  • Changeux, J.P., and S.J. Edelstein. 1998. Allosteric receptors after 30 years. Neuron 21:959–980.

    Article  Google Scholar 

  • Changeux, J.P., and S.J. Edelstein. 2005. Allosteric mechanisms of signal transduction. Science 308:1424–1428.

    Article  ADS  Google Scholar 

  • Cheng, M.H., M. Cascio, and R.D. Coalson. 2005. Theoretical studies of the M2 transmembrane segment of the glycine receptor: Models of the open pore structure and current–voltage characteristics. Biophys. J. 89:1669–1680.

    Article  Google Scholar 

  • Conley, E.C. 1996. The Ion Channels Factbook I—Extracellular Ligand-Gated Channels. Academic Press, London, UK.

    Google Scholar 

  • Cordero-Erausquin, M., L.M. Marubio, R. Klink, and J.P. Changeux. 2000. Nicotinic receptor function: New perspectives from knockout mice. Trends Pharmacol. Sci. 21:211–217.

    Article  Google Scholar 

  • Corringer, P.J., S. Bertrand, J.-L. Galzi, A. Devillers-Thiery, J.P. Changeux, and D. Bertrand. 1999. Mutational analysis of the charge selectivity filter of the alpha7 nicotinic acetylcholine receptor. Neuron 22:831–843.

    Article  Google Scholar 

  • Corringer, P.J., N. Le Novere, and J.P. Changeux. 2000. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40:431–458.

    Article  Google Scholar 

  • Dahan, D.S., M.I. Dibas, E.J. Petersson, V.C. Aeyeung, B. Chanda, F. Bezanilla, D.A. Dougherty, and H.A. Lester. 2004. A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site. Proc. Natl. Acad. Sci. USA 101:10195–10200.

    Article  ADS  Google Scholar 

  • Eghbali, M., J.P. Curmi, B. Birnir, and P.W. Gage. 1997. Hippocampal GABA(A) channel conductance increased by diazepam. Nature 388:71–75.

    Article  ADS  Google Scholar 

  • Filippova, N., V.E. Wotring, and D.S. Weiss. 2004. Evidence that the TM1-TM2 contributes to the rho1 GABA receptor pore. J. Biol. Chem. 279:20906–20914.

    Article  Google Scholar 

  • Galzi, J.-L., A. Devillers-Thiery, N. Hussy, S. Bertrand, J.P. Changeux, and D. Bertrand. 1992. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–505.

    Article  ADS  Google Scholar 

  • Gandhi, C.S., and E.Y. Isacoff. 2005. Shedding light on membrane proteins. Trends Neurosci. 28:472–479.

    Article  Google Scholar 

  • Gao, F., N. Bren, T.P. Burghardt, S. Hansen, R.H. Henchman, P. Taylor, J.A. McCammon, and S.M. Sine. 2005. Agonist-mediated conformational changes in acetylcholine-binding protein revealed by simulation and intrinsic tryptophan fluorescence. J. Biol. Chem. 280:8443–8451.

    Article  Google Scholar 

  • Goren, E.N.,D.C. Reeves, and M.H. Akabas. 2004. Loose protein packing around the extracellular half of the GABA(A) receptor beta1 subunit M2 channel-lining segment. J. Biol. Chem. 279:11198–11205.

    Article  Google Scholar 

  • Grosman, C., M. Zhou, and A. Auerbach. 2000. Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403:773–776.

    Article  ADS  Google Scholar 

  • Grudzinska, J., R. Schemm, S. Haeger, A. Nicke, G. Schmalzing, H. Betz, and B. Laube. 2005. The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45:727–739.

    Article  Google Scholar 

  • Grutter, T., L. Prado de Carvalho, N. Le Novere, P.J. Corringer, S. Edelstein, and J.P. Changeux. 2003. An H-bond between two residues from different loops of the acetylcholine binding site contributes to the activation mechanism of nicotinic receptors. EMBO J. 22:1990–2003.

    Article  Google Scholar 

  • Gunthorpe, M.J., and S.C. Lummis. 2001. Conversion of the ion selectivity of the 5-HT(3A) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem. 276:10977–10983.

    Article  Google Scholar 

  • Hamill, O.P., A. Marty, E. Neher, B. Sakmann, and F.J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391:85–100.

    Article  Google Scholar 

  • Han, N.L., J.D. Clements, and J.W. Lynch. 2004. Comparison of taurine- and glycine-induced conformational changes in the M2-M3 domain of the glycine receptor. J. Biol. Chem. 279:19559–19565.

    Article  Google Scholar 

  • Hansen, S.B., G. Sulzenbacher, T. Huxford, P. Marchot, P. Taylor, and Y. Bourne. 2005. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive interfaces and conformations. EMBO J. 24:3635–3646.

    Article  Google Scholar 

  • Hille, B. 2001. Ionic Channels of Excitable Cells, 3rd Ed. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Horenstein, J., D.A. Wagner, C. Czajkowski, M.H. Akabas. 2001. Protein mobility and GABA-induced conformational changes in GABA(A) receptor pore-lining M2 segment. Nat. Neurosci. 4:477–485.

    Google Scholar 

  • Imoto, K., C. Busch, B. Sakmann, M. Mishina, T. Konno, J. Nakai, H. Bujo, Y. Mori, K. Fukuda, and S. Numa. 1988. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648.

    Article  ADS  Google Scholar 

  • Jordan, P.C. 2006. Ion channels from fantasy to facts in fifty years. In: Handbook of Ion Channels: Dynamics, Structure and Applications. S-H. Chung, O.S. Andersen, and V. Krishnamurthy, editors. Springer-Verlag, New York, pp. 3–29 (Chapter 1, this volume).

    Google Scholar 

  • Kandel, E.R., and S.A. Siegelbaum. 2000. Overview of synaptic transmission and signalling at the nerve–muscle synapse: Direct-gated transmission. In: Principles of Neural Science, 4th Ed. E.R. Kandel, J.H. Schwartz, and T.M. Jessell, editors. McGraw-Hill, New York, pp. 175–206.

    Google Scholar 

  • Karlin, A. 2002. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3:102–114.

    Article  Google Scholar 

  • Karlin, A., and M.H. Akabas. 1998. Substituted-cysteine accessibility method. Meth. Enzymol. 293:123–145.

    Article  Google Scholar 

  • Kash, T.L., M.J. Dizon, J.R. Trudell, and N.L. Harrison. 2004. Charged residues in the beta2 subunit involved in GABAA receptor activation. J. Biol. Chem. 279:4887–4893.

    Article  Google Scholar 

  • Kash, T.L., A. Jenkins, J.C Kelley, J.R. Trudell, andN.L. Harrison. 2003. Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature 421:272–275.

    Article  ADS  Google Scholar 

  • Kelley, S.P., J.I. Dunlop, E.F. Kirkness, J.J. Lambert, and J.A. Peters. 2003. A cytoplasmic region determines single-channel conductance in 5-HT3 receptors. Nature 424:321–324.

    Article  ADS  Google Scholar 

  • Keramidas, A., A.J. Moorhouse, C.R. French, P.R. Schofield, and P.H. Barry. 2000. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective. Biophys. J. 79:247–259.

    Article  Google Scholar 

  • Keramidas, A., A.J. Moorhouse, K.D. Pierce, P.R. Schofield, and P.H. Barry. 2002. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. J. Gen. Physiol. 119:393–410.

    Article  Google Scholar 

  • Keramidas, A., A.J. Moorhouse, P.R. Schofield, and P.H. Barry. 2004. Ligand-gated ion channels: Mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol. 86:161–204.

    Article  Google Scholar 

  • Kim, S., A.K. Chamberlain, and J.U. Bowie. 2004. A model of the closed form of the nicotinic acetylcholine receptor M2 channel pore. Biophys. J. 87:792–799.

    Article  Google Scholar 

  • Koshland, D.E., Jr., G. Nemethy, and D. Filmer. 1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385.

    Article  Google Scholar 

  • Labarca, C., M.W. Nowak, H. Zhang, L. Tang, P. Deshpande, and H.A. Lester. 1995. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376:514–516.

    Article  ADS  Google Scholar 

  • Langosch, D., B. Laube, N. Rundstrom, V. Schmieden, J. Bormann, and H. Betz. 1994. Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. EMBO J. 13:4223–4228.

    Google Scholar 

  • Lee, D.J.-S., A. Keramidas, A.J. Moorhouse, P.R. Schofield, and P.H. Barry. 2003. The contribution of proline 250 (P-2′) to pore diameter and ion selectivity in the human glycine receptor channel. Neurosci. Lett. 351:196–200.

    Article  Google Scholar 

  • Lester, H.A., M.I. Dibas, D.S. Dahan, J.F. Leite, andD.A. Dougherty. 2004. Cys-loop receptors: New twists and turns. Trends Neurosci. 27:329–336.

    Article  Google Scholar 

  • Lummis, S.C., D. Beene, N.L. Harrison, H.A. Lester, and D.A. Dougherty. 2005. A cation-pi binding interaction with a tyrosine in the binding site of the GABA(C) receptor. Chem. Biol. 12:993–997.

    Article  Google Scholar 

  • Lynch, J.W. 2004. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84:1051–1095.

    Article  Google Scholar 

  • Lynch, J.W., N.L. Han, J.L. Haddrill, K.D. Pierce, and P.R. Schofield. 2001. The surface accessibility of the glycine receptor M2-M3 loop is increased in the channel open state. J. Neurosci. 21:2589–2599.

    Google Scholar 

  • Lynch, J.W., S. Rajendra, K.D. Pierce, C.A. Handford, P.H. Barry, and P.R. Schofield. 1997. Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel. EMBO J. 16:110–120.

    Article  Google Scholar 

  • Mihic, S.J., Q. Ye, M.J. Wick, V.V. Koltchine, M.D. Krasowski, S.E. Finn, M.P. Mascia, C.F. Valenzuela, K.K. Hansen, E.P. Greenblatt, R.A. Harris, and N.L. Harrison. 1997. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389.

    Article  ADS  Google Scholar 

  • Miyazawa, A.,Y. Fujiyoshi, M. Stowell, andN. Unwin. 1999. Nicotinic acetylcholine receptor at 4.6 A resolution: Transverse tunnels in the channel wall. J. Mol. Biol. 288:765–786.

    Article  Google Scholar 

  • Miyazawa, A., Y. Fujiyoshi, and N. Unwin. 2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955.

    Article  ADS  Google Scholar 

  • Mohler, H., D. Benke, J.M. Fritschy, and J. Benson. 2000. The benzodiazepine site of GABAA receptors. In: GABA in the Nervous System: The View at 50 Years. D.L. Martin and R.W. Olsen, eds. Lippincott, Williams and Wilkins, Philadelphia, pp. 97–112.

    Google Scholar 

  • Moorhouse, A.J., A. Keramidas, A. Zaykin, P.R. Schofield, and P.H. Barry. 2002. Single channel analysis of conductance and rectification in cation-selective, mutant glycine receptor channels. J. Gen. Physiol. 119:411–425.

    Article  Google Scholar 

  • O’Mara, M., P.H. Barry, and S.-H. Chung. 2003. A model of the glycine receptor deduced from Brownian dynamics studies. Proc. Natl. Acad. Sci. USA 100:4310–4315.

    Article  ADS  Google Scholar 

  • Panicker, S., H. Cruz, C. Arrabit, and P.A. Slesinger. 2002. Evidence for a centrally located gate in the pore of a serotonin-gated ion channel. J. Neurosci. 22:1629–1639.

    Google Scholar 

  • Rajendra, S., J.W. Lynch, K.D. Pierce, C.R. French, P.H. Barry, and P.R. Schofield. 1995. Mutation of an arginine residue in the human glycine receptor transforms beta-alanine and taurine from agonists into competitive antagonists. Neuron 14:169–175.

    Article  Google Scholar 

  • Rundström, N., V. Schmieden, H. Betz, J. Bormann, and D. Langosch. 1994. Cyanotriphenylborate: Subtype specific blocker of glycine receptor chloride channels. Proc. Natl. Acad. Sci. USA 91:8950–8954.

    Article  ADS  Google Scholar 

  • Schmieden, V., J. Kuhse, and H. Betz. 1993. Mutation of glycine receptor subunit creates beta-alanine receptor responsive to GABA. Science 262:256–258.

    Article  ADS  Google Scholar 

  • Schofield, P.R., J.W. Lynch, S. Rajendra, K.D. Pierce, C.A. Handford, and P.H. Barry. 1996. Molecular and genetic insights into ligand binding and signal transduction at the inhibitory glycine receptor. Cold Spring Harb. Symp. Quant. Biol. 61:333–342.

    Google Scholar 

  • Shan, Q., S.T. Nevin, J.L. Haddrill, and J.W. Lynch. 2003. Asymmetric contribution of alpha and beta subunits to the activation of alphabeta heteromeric glycine receptors. J. Neurochem. 86:498–507.

    Article  Google Scholar 

  • Spier, A.D., and S.C. Lummis. 2000. The role of tryptophan residues in the 5-hydroxytryptamine(3) receptor ligand binding domain. J. Biol. Chem. 275:5620–5625.

    Article  Google Scholar 

  • Taly, A., M. Delarue, T. Grutter, M. Nilges, N. Le Novere, P.J. Corringer, and J.P. Changeux. 2005. Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys. J. 88:3954–3965.

    Article  Google Scholar 

  • Unwin, N. 1993. Nicotinic acetylcholine receptor at 9 A resolution. J. Mol. Biol. 229:1101–1124.

    Article  Google Scholar 

  • Unwin, N. 1995. Acetylcholine receptor channel imaged in the open state. Nature 373:37–43.

    Article  ADS  Google Scholar 

  • Unwin, N. 2000. The Croonian Lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355:1813–1829.

    Article  Google Scholar 

  • Unwin, N. 2003. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 555:91–95.

    Article  Google Scholar 

  • Unwin, N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4 angstrom resolution. J. Mol. Biol. 346:967–989.

    Article  Google Scholar 

  • Unwin, N., A. Miyazawa, J. Li, and Y. Fujiyoshi. 2002. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the alpha subunits. J. Mol. Biol. 319:1165–1176.

    Article  Google Scholar 

  • Villarroel, A., S. Herlitze, M.Koenen, and B. Sakmann. 1991. Location of a threonine residue in the alpha-subunit M2 transmembrane segment that determines the ion flow through the acetylcholine receptor channel. Proc. R. Soc. Lond. B. Biol. Sci. 243:69–74.

    Article  ADS  Google Scholar 

  • Wagner, D.A., and C. Czajkowski. 2001. Structure and dynamics of the GABA binding pocket: A narrowing cleft that constricts during activation. J. Neurosci. 21:67–74.

    Google Scholar 

  • Wotring, V.E., T.S. Miller, and D.S. Weiss. 2003. Mutations at the GABA receptor selectivity filter: A possible role for effective charges. J. Physiol. 548:527–540.

    Article  Google Scholar 

  • Wilson, G.G., and A. Karlin. 1998. The location of the gate in the acetylcholine receptor channel. Neuron 20:1269–1281.

    Article  Google Scholar 

  • Xu, M., and M.H. Akabas. 1996. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA(A) receptor alpha1 subunit. J. Gen. Physiol. 107:195–205.

    Article  Google Scholar 

  • Yu, Y., L. Shi, and A. Karlin. 2003. Structural effects of quinacrine binding in the open channel of the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 100:3907–3912.

    Article  ADS  Google Scholar 

  • Zhong, W., J.P. Gallivan, Y. Zhang, L. Li, H.A. Lester, and D.A. Dougherty. 1998. From ab initio quantum mechanics to molecular neurobiology: A cation-pi binding site in the nicotinic receptor. Proc. Natl. Acad. Sci. USA 95:12088–12093.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lynch, J.W., Barry, P.H. (2007). Ligand-Gated Ion Channels: Permeation and Activation1 . In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_9

Download citation

Publish with us

Policies and ethics