Skip to main content

Structure and Function of the Gut Mucosal Immune System

  • Chapter
Immune Mechanisms in Inflammatory Bowel Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandtzaeg P, Baekkevold ES, Farstad IN et al. Regional specialization in the mucosal immune system: What happens in the microcompartments? Immunol Today 1999; 20:141–151.

    PubMed  CAS  Google Scholar 

  2. Brandtzaeg P, Farstad IN, Haraldsen G. Regional specialization in the mucosal immune system: Primed cells do not always home along the same track. Immunol Today 1999; 20:267–277.

    PubMed  CAS  Google Scholar 

  3. Pabst R. The anatomical basis for the immune function of the gut. Anat Embryol 1987; 176:135–144.

    PubMed  CAS  Google Scholar 

  4. Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol Rev 1997; 156:145–166.

    PubMed  CAS  Google Scholar 

  5. Lefrancois L, Puddington L. Basic aspects of intraepithelial lymphocyte immunobiology. In: Ogra PL, Mestecky J, Lamm ME et al, eds. Mucosal immunology. 2nd ed. San Diego: Academic Press, 1999:413–428.

    Google Scholar 

  6. Kawabata S, Boyaka PN, Coste M et al. Intraepithelial lymphocyte from villus tip and crypt portions of the murine small intestine show distinct characteristics. Gastroenterology 1998; 115:866–873.

    PubMed  CAS  Google Scholar 

  7. Inagaki-Ohara K, Nishimura H, Mitani A et al. Interleukin-15 preferentially promotes the growth of intestinal intraepithelial lymphocytes bearing γδ T cell receptor in mice. Eur J Immunol 1997; 27:2885–2891.

    PubMed  CAS  Google Scholar 

  8. Fujihashi K, McGhee JR, Yamamoto M et al. An interleukin-7 internet for intestinal intraepithelial T cell development: Knockout of ligand or receptor reveal differences in the immunodeficient state. Eur J Immunol 1997; 27:2133–2138.

    PubMed  CAS  Google Scholar 

  9. Chu CL, Chen SS, Wu TS et al. Differential effects of IL-2 and IL-15 on the death and survival of activated TCRγδ+ intestinal intraepithelial lymphocytes. J Immunol 1999; 162:1896–1903.

    PubMed  CAS  Google Scholar 

  10. Yamamoto M, Fujihashi K, Kawabata K et al. A mucosal intranet: Intestinal epithelial cells down-regulate intraepithelial, but not peripheral, T lymphocytes. J Immunol 1998; 160:2188–2196.

    PubMed  CAS  Google Scholar 

  11. Roberts AI, Nadler SC, Ebert EC. Mesenchymal cells stimulate human intestinal intraepithelial lymphocytes. Gastroenterology 1997; 113:144–150.

    PubMed  CAS  Google Scholar 

  12. Morimoto Y, Hizuta A, Ding EX et al. Functional expression of Fas and Fas ligand on human intestinal intraepithelial lymphocytes. Clin Exp Immunol 1999; 116:84–89.

    PubMed  CAS  Google Scholar 

  13. Imaoka A, Matsumoto S, Setoyama H et al. Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. Eur J Immunol 1996; 26:945–948.

    PubMed  CAS  Google Scholar 

  14. Rothkötter HJ, Möllhoff S, Pabst R. The influence of age and breeding conditions on the number and proliferation of intraepithelial lymphocytes in pigs. Scand J Immunol 1999; 50:31–38.

    PubMed  Google Scholar 

  15. Helgeland L, Vaage JT, Rolstad B et al. Regional phenotypic specialization of intraepithelial lymphocytes in the rat intestine does not depend on microbial colonization. Scand J Immunol 1997; 46:349–357.

    PubMed  CAS  Google Scholar 

  16. Penney L, Kilshaw PJ, MacDonald TT. Regional variation in the proliferative rate and lifespan of αβ TCR+ and γδ TCR+ intraepithelial lymphocytes in the murine small intestine. Immunology 1995; 86:212–218.

    PubMed  CAS  Google Scholar 

  17. Chott A, Gerdes D, Spooner A et al. Intraepithelial lymphocytes in normal human intestine do not express proteins associated with cytolytic function. Am J Pathol 1997; 151:435–442.

    PubMed  CAS  Google Scholar 

  18. Hayday A, Theodoridis E, Ramsburg E et al. Intraepithelial lymphocytes: Exploring the Third Way in immunology. Nature Immunol 2001; 2:997–1003.

    CAS  Google Scholar 

  19. Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2:361–367.

    PubMed  CAS  Google Scholar 

  20. Rothkötter HJ, Ulbrich H, Pabst R. The postnatal development of gut lamina propria lymphocytes: Number, proliferation and T and B cell subsets in conventional and germ-free pigs. Pediatr Res 1991; 29:237–242.

    PubMed  Google Scholar 

  21. Rothkötter HJ, Kirchhoff T, Pabst R. Lymphoid and nonlymphoid cells in the epithelium and lamina propria of intestinal mucosa of pigs. Gut 1994; 35:1582–1589.

    PubMed  Google Scholar 

  22. Brandtzaeg P. Development of the mucosal immune system in humans. In: Bindels JG, Goedhart AC, Visser HKA, eds. Recent Developments in Infant Nutrition. London: Kluwer Academic, 1996:349–376.

    Google Scholar 

  23. Sugahara S, Shimizu T, Yoshida Y et al. Extrathymic derivation of gut lymphocytes in parabiotic mice. Immunology 1999; 96:57–65.

    PubMed  CAS  Google Scholar 

  24. Rothkötter HJ, Hriesik C, Barman NN et al. B and also T lymphocytes migrate via gut lymph to all lymphoid organs and the gut wall, but only IgA cells accumulate in the lamina propria of the intestinal mucosa. Eur J Immunol 1999; 29:327–333.

    PubMed  Google Scholar 

  25. Jalkanen S, Nash GS, De los Toyos J et al. Human lamina propria lymphocytes bear homing receptors and bind selectively to mucosal lymphoid high endothelium. Eur J Immunol 1989; 19:63–68.

    PubMed  CAS  Google Scholar 

  26. Dunn-Walters DK, Boursier L, Spencer J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur J Immunol 1997; 27:2959–2964.

    PubMed  CAS  Google Scholar 

  27. Holtmeier W, Witthöft T, Hennemann A et al. The TCR-γ repertoire in human intestine undergoes characteristic changes during fetal to adult development. J Immunol 1997; 158:5632–5641.

    PubMed  CAS  Google Scholar 

  28. Agace WW, Roberts AI, Wu L et al. Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation. Eur J Immunol 2000; 30:819–826.

    PubMed  CAS  Google Scholar 

  29. Bowman EP, Kuklin NA, Youngman KR et al. The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells. J Exp Med 2002; 195:269–275.

    PubMed  CAS  Google Scholar 

  30. Fujimori H, Miura S, Koseki S et al. Intravital observation of adhesion of lamina propria lymphocytes to microvessels of small intestine in mice. Gastroenterology 2002; 122:734–744.

    PubMed  CAS  Google Scholar 

  31. Downing JEG, Miyan JA. Neural immunoregulation: Emerging roles for nerves in immune homeostasis and disease. Immunol Today 2000; 21:281–289.

    PubMed  CAS  Google Scholar 

  32. Frieling T, Weber E, Schemann M. Inflammatory mediators influencing submucosal secretory reflexes. Ann NY Acad Sci 2000; 915:98–101.

    PubMed  CAS  Google Scholar 

  33. Sharkey KA, Kroese AB. Consequences of intestinal inflammation on the enteric nervous system: Neuronal activation induced by inflammatory mediators. Anat Rec 2001; 262:79–90.

    PubMed  CAS  Google Scholar 

  34. Slifka MK, Antia R, Whitmire JK et al. Humoral immunity due to long-lived plasma cells. Immunity 1998; 8:363–372.

    PubMed  CAS  Google Scholar 

  35. Brandtzaeg P, Farstad IN. The human mucosal B cell system. In: Ogra PL, Mestecky J, Lamm ME et al, eds. Mucosal immunology. 2nd ed. San Diego: Academic Press, 1999:439–468.

    Google Scholar 

  36. Farstad IN, Carlsen H, Morton HC et al. Immunoglobulin a cell distribution in the human small intestine: Phenotypic and functional characteristics. Immunology 2000; 101:354–363.

    PubMed  CAS  Google Scholar 

  37. Martin F, Kearney JF. B1 cells: Similarities and differences with other B cell subsets. Curr Opinion Immunol 2001; 13:195–201.

    CAS  Google Scholar 

  38. Su I, Tarakhovsky A. B1 cells: Orthodox or conformist? Curr Opinion Immunol 2000; 12:191–194.

    CAS  Google Scholar 

  39. Hiroi T, Kiyono H. Role of interleukin 15 and IL-15R for common mucosal immune system-independent IgA B1 cells. Mucosal Immunol Update 2000; 8:14–15.

    Google Scholar 

  40. Donze HH, Lue C, Julian BA et al. Human peritoneal B-1 cells and the influence of continuous ambulatory peritoneal dialysis on peritoneal and peripheral blood mononuclear cell (PBMC) composition and immunoglobulin levels. Clin Exp Immunol 1997; 109:356–361.

    PubMed  CAS  Google Scholar 

  41. Mellander A, Mattsson A, Svennerholm AM et al. Relationship between interdigestive motility and secretion of immunoglobulin A in human proximal small intestine. Dig Dis Sci 1997; 42:554–567.

    PubMed  CAS  Google Scholar 

  42. Mestecky J, Russell MW, Elson CO. Intestinal IgA: Novel views on its function in the defence of the largest mucosal surface. Gut 1999; 44:2–5.

    PubMed  CAS  Google Scholar 

  43. Lamm ME, Phillips-Quagliata JM. Origin and homing of intestinal IgA antibody-secreting cells. J Exp Med 2002; 195:F5–F8.

    PubMed  CAS  Google Scholar 

  44. Moghaddami M, Cummins A, Mayrhofer G. Lymphocyte-filled villi: Comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 1998; 115:1414–1425.

    PubMed  CAS  Google Scholar 

  45. Mayrhofer G, Brooks A. Lymphopoiesis in lymphocyte-filled villi in the small intestine of the rat. Clin Immunol Immunopathol 1995; 76:S55.

    Google Scholar 

  46. Günther H, Schulze F, Heilmann P. Zum pathogenetischen Verhalten verschiedener enterotoxinbildender Escherichia-coli-Stämme im Darmkanal neugeborener Kälber. Monatsheft Vet Med 1983; 38:96–103.

    Google Scholar 

  47. Kanamori Y, Ishimaru K, Nanno M et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 1996; 184:1449–1459.

    PubMed  CAS  Google Scholar 

  48. Saito H, Kanamori Y, Takemori T et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 1998; 280:275–278.

    PubMed  CAS  Google Scholar 

  49. Oida T, Suzuki K, Nanno M et al. Role of gut cryptopatches in early extrathymic maturation of intestinal intraepithelial T cells. J Immunol 2000; 164:3616–3626.

    PubMed  CAS  Google Scholar 

  50. Suzuki K, Oida T, Hamada H et al. Gut cryptopatches: Direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity 2000; 13:691–702.

    PubMed  CAS  Google Scholar 

  51. Lambolez F, Azogui O, Joret AM et al. Characterization of T cell differentiation in the murine gut. J Exp Med 2002; 195:437–449.

    PubMed  CAS  Google Scholar 

  52. Hamada H, Hiroi T, Nishiyama Y et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 2002; 168:57–64.

    PubMed  CAS  Google Scholar 

  53. Dukes C, Bussey HJR. The number of lymphoid follicles of the human large intestine. Pathol Bacteriol 1926; 29:111–116.

    Google Scholar 

  54. Yeung MMW, Melgar S, Baranov V et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: Immune cell phenotype and TcR-γδ expression. Gut 2000; 47:215–227.

    PubMed  CAS  Google Scholar 

  55. Farstad IN, Halstensen TS, Fausa O et al. Heterogeneity of M-cell-associated B and T cells in human Peyer’s patches. Immunology 1994; 83:457–464.

    PubMed  CAS  Google Scholar 

  56. Griebel PJ, Hein WR. Expanding the role of Peyer’s patches in B-cell ontogeny. Immunol Today 1996; 17:30–39.

    PubMed  CAS  Google Scholar 

  57. Rothkötter HJ, Pabst R. Lymphocyte subsets in jejunal and ileal Peyer’s patches of normal and gnotobiotic minipigs. Immunology 1989; 67:103–108.

    PubMed  Google Scholar 

  58. Tsuzuki Y, Miura S, Suematsu M et al. α4-integrin plays a critical role in early stages of T lymphocyte migration in Peyer’s patches of rats. Int Immunol 1996; 8:287–295.

    PubMed  CAS  Google Scholar 

  59. Tsuzuki Y, Miura S, Kurose I et al. Enhanced lymphocyte interaction in postcapillary venules of Peyer’s patches during fat absorption in rats. Gastroenterology 1997; 112:813–825.

    PubMed  CAS  Google Scholar 

  60. Spahn TW, Fontana A, Faria AMC et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. Eur J Immunol 2001; 31:1278–1287.

    PubMed  CAS  Google Scholar 

  61. Warnock RA, Campbell JJ, Dorf ME et al. The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer’s patch high endothelial venules. J Exp Med 2000; 191:77–88.

    PubMed  CAS  Google Scholar 

  62. Dunn-Walters DK, Isaacson PG, Spencer J. Sequence analysis of rearranged IgVH genes from microdissected human Peyer’s patch marginal zone B cells. Immunology 1996; 88:618–624.

    PubMed  CAS  Google Scholar 

  63. Nagata S, McKenzie C, Pender SLF et al. Human Peyer’s patch T cells are sensitized to dietary antigen and display a Th cell type 1 cytokine profile. J Immunol 2000; 165:5315–5321.

    PubMed  CAS  Google Scholar 

  64. MacDonald TT, Monteleone G. IL-12 and Th1 immune responses in human Peyer’s patches. Trends Immunol 2001; 22:244–247.

    PubMed  CAS  Google Scholar 

  65. Neutra MR, Frey A, Kraehenbuhl. Epithelial M cells: Gateways for mucosal infection and immunization. Cell 1996; 86:345–348.

    PubMed  CAS  Google Scholar 

  66. Gebert A, Rothkötter HJ, Pabst R. M cells in Peyer’s patches of the intestine. Int Rev Cytol 1996; 167:91–159.

    PubMed  CAS  Google Scholar 

  67. Gebert A. The role of M cells in the protection of mucosal membranes. Histochem Cell Biol 1997; 108:455–470.

    PubMed  CAS  Google Scholar 

  68. Davis IC, Owen RL. The immunopathology of M cells. Springer Sem Immunopathol 1997; 18:421–448.

    CAS  Google Scholar 

  69. Kernéis S, Pringault E. Plasticity of the gastrointestinal epithelium: The M cell paradigm and opportunism of pathogenic microorganisms. Semin Immunol 1999; 11:205–215.

    PubMed  Google Scholar 

  70. Debard N, Sierro F, Kraehenbuhl JP. Development of Peyer’s patches, follicle-associated epithelium and M cell: Lessons from immunodeficient and knockout mice. Semin Immunol 1999; 11:183–191.

    PubMed  CAS  Google Scholar 

  71. Schulte R, Kerneis S, Klinke S et al. Translocation of Yersinia enterocolitica across reconstituted intestinal epithelial monolayers is triggered by Yersinia invasin binding to β1 integrins apically expressed on M-like cells. Cellular Microbiol 2000; 2:173–185.

    CAS  Google Scholar 

  72. Gebert A, Fassbender S, Werner K et al. The development of M cells in Peyer’s patches is restricted to specialized dome-associated crypts. Am J Pathol 1999; 154:1573–1582.

    PubMed  CAS  Google Scholar 

  73. Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nature Immunol 2001; 2:1004–1009.

    CAS  Google Scholar 

  74. Nicoletti C. Unsolved mysteries of intestinal M cells. Gut 2000; 47:735–739.

    PubMed  CAS  Google Scholar 

  75. Morfitt DG, Pohlenz JFL. Porcine colonic lymphoglandular complex: Distribution, structure, and epithelium. Am J Anat 1989; 184:41–51.

    PubMed  CAS  Google Scholar 

  76. Liebler EM, Paar M, Pohlenz JF. M cells in the rectum of calves. Res Vet Sci 1991; 51:107–114.

    PubMed  CAS  Google Scholar 

  77. Neutra MR. Interactions of viruses and microparticles with apical plasma membranes of M cells: Implications for human immunodeficiency virus transmission. J Infect Dis 1999; 179(Suppl 3):441–443.

    Google Scholar 

  78. Bishop SA, Stokes CR, Gruffydd-Jones TJ et al. Vaginal and rectal infection of cats with feline immunodeficiency virus. Vet Microbiol 1996; 51:217–227.

    PubMed  CAS  Google Scholar 

  79. Gretz JE, Anderson AO, Shaw S. Cords, channels, corridors and conduits: Critical architectural elements facilitating cell interactions in the lymph nodes cortex. Immunol Rev 1997; 156:11–24.

    PubMed  CAS  Google Scholar 

  80. Gretz JE, Norbury CC, Anderson AO et al. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 2000; 192:1425–1439.

    PubMed  CAS  Google Scholar 

  81. Huang FP, Platt N, Wykes M et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 2000; 191:435–443.

    PubMed  CAS  Google Scholar 

  82. Bode U, Duda C, Weidner F et al. Activated T cells enter rat lymph nodes and Peyer’s patches via high endothelial venules: Survival by tissue-specific proliferation and preferential exit of CD8+ T cell progeny. Eur J Immunol 1999; 29:1487–1495.

    PubMed  CAS  Google Scholar 

  83. Bode U, Sparmann G, Westermann J. Gut-derived effector T cells circulating in the blood of the rat: Preferential redistribution by TGFβ-1 and IL-4 maintained proliferation. Eur J Immunol 2001; 31:2116–2125.

    PubMed  CAS  Google Scholar 

  84. Young AJ, Seabrook TJ, Marston WL et al. A role for lymphatic endothelium in the sequestration of recirculating γδ T cells in TNF-α-stimulated lymph nodes. Eur J Immunol 2000; 30:327–334.

    PubMed  CAS  Google Scholar 

  85. Binns RM, Pabst R. Lymphoid tissue structure and lymphocyte trafficking in the pig. Vet Immunol Immunopathol 1994; 43:79–87.

    PubMed  CAS  Google Scholar 

  86. Regoli M, Borghesi C, Bertelli E et al. Arrangement of the small intestine lymphatic network in the Peyer’s patches of the mouse. A light and transmission electron microscopic study. Ann Anat 1995; 177:229–235.

    PubMed  CAS  Google Scholar 

  87. Nagata H, Miyairi M, Sekizuka E et al. In vivo visualization of lymphatic microvessels and lymphocyte migration through rat Peyer’s patches. Gastroenterology 1994; 106:1548–1553.

    PubMed  CAS  Google Scholar 

  88. Farstad IN, Norstein J, Brandtzaeg P. Phenotypes of B and T cells in human intestinal and mesenteric lymph. Gastroenterology 1997; 112:163–173.

    PubMed  CAS  Google Scholar 

  89. Thielke KH, Pabst R, Rothkötter HJ. Quantification of proliferating lymphocyte subsets appearing in the intestinal lymph and the blood. Clin Exp Immunol 1999; 117:277–284.

    PubMed  CAS  Google Scholar 

  90. Rothkötter HJ, Hriesik C, Pabst R. More newly formed T than B lymphocytes leave the intestinal mucosa via lymphatics. Eur J Immunol 1995; 25:866–869.

    PubMed  Google Scholar 

  91. MacPherson GG, Liu LM. Dendritic cells and Langerhans cells in the uptake of mucosal antigens. Curr Top Microbiol Immunol 1999; 236:33–53.

    PubMed  CAS  Google Scholar 

  92. Norris S, Collins C, Doherty DG et al. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatology 1998; 28:84–90.

    CAS  Google Scholar 

  93. Luettig B, Pape L, Bode U et al. Naive and memory T lymphocytes migrate in comparable numbers through normal rat liver: Activated T cells accumulate in the periportal field. J Immunol 1999; 163:4300–4307.

    PubMed  CAS  Google Scholar 

  94. Butcher EC, Williams M, Youngman K et al. Lymphocyte trafficking and regional immunity. Adv Immunol 1999; 72:209–253.

    PubMed  CAS  Google Scholar 

  95. Westermann J, Engelhardt B, Hoffmann JC. Migration of T cells in vivo: Molecular mechanisms and clinical implications. Ann Intern Med 2001; 135:279–295.

    PubMed  CAS  Google Scholar 

  96. Kunkel EJ, Ramos CL, Steeber DA et al. The roles of L-selectin, β7 integrins, and P-selectin in leukocyte rolling and adhesion in high endothelial venules of Peyer’s patches. J Immunol 1998; 161:2449–2456.

    PubMed  CAS  Google Scholar 

  97. Farstad IN, Halstensen TS, Lien B et al. Distribution of β7 integrins in human intestinal mucosa and organized gut-associated lymphoid tissue. Immunology 1996; 89:227–237.

    PubMed  CAS  Google Scholar 

  98. Farstad IN, Halstensen TS, Kvale D et al. Topographic distribution of homing receptors on B and T cells in human gut-associated lymphoid tissue. Am J Pathol 1997; 150:187–199.

    PubMed  CAS  Google Scholar 

  99. Haraldsen G, Kvale D, Lien B et al. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human intestinal microvascular endothelial cells. J Immunol 1996; 156:2558–2565.

    PubMed  CAS  Google Scholar 

  100. Briskin M, Winsor-Hines D, Shyjan A et al. Human mucosal addression cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 1997; 151:97–110.

    PubMed  CAS  Google Scholar 

  101. Kantele JM, Kantele A, Arvilommi H. Circulating immunoglobulin-secreting cell are heterogeneous in their expression of maturation markers and homing receptors. Clin Exp Immunol 1996; 104:525–530.

    PubMed  CAS  Google Scholar 

  102. Meenan J, Spaans J, Grool TA et al. Altered expression of α4β7, a gut homing integrin, by circulating and mucosal T cells in colonic mucosal inflammation. Gut 1997; 40:241–246.

    PubMed  CAS  Google Scholar 

  103. Kantele JM, Arvilommi H, Kontianinen S et al. Mucosally activated circulating human B cells in diarrhea express homing receptors directing them back to the gut. Gastroenterology 1996; 110:1061–1067.

    PubMed  CAS  Google Scholar 

  104. Ebert EC. Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology 1998; 115:1439–1445.

    PubMed  CAS  Google Scholar 

  105. Hedges SR, Agace WW, Svanborg C. Epithelial cytokine responses and mucosal cytokine networks. Trends Microbiol 1995; 3:266–270.

    PubMed  CAS  Google Scholar 

  106. Slifka MK, Whitton JL. Antigen-specific regulation of T cell-mediated cytokine production. Immunity 2000; 12:451–457.

    PubMed  CAS  Google Scholar 

  107. Fujihashi K, Kweon MN, Kiyono H et al. A T cell/B cell/epithelial cell internet for mucosal inflammation and immunity. Springer Semin Immunopathol 1997; 18:477–494.

    PubMed  CAS  Google Scholar 

  108. Kjerrulf M, Grdic D, Ekman L et al. Interferon-γ receptor-deficient mice exhibit impaired gut mucosal immune responses but intact oral tolerance. Immunology 1997; 92:60–68.

    PubMed  CAS  Google Scholar 

  109. Iwasaki A, Kelsall BL. Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J Exp Med 2001; 191:1381–1393.

    Google Scholar 

  110. Blanas E, Davey GM, Carbone FR et al. A bone marrow-derived APC in the gut-associated lymphoid tissue captures oral antigens and presents them to both CD4+ and CD8+ T cells. J Immunol 2000; 164:2890–2896.

    PubMed  CAS  Google Scholar 

  111. Ardavin C, Martinez del Hoyo G, Martin P et al. Origin and differentiation of dendritic cells. Trends Immunol 2001; 22:691–700.

    PubMed  CAS  Google Scholar 

  112. Weiner HL. The mucosal milieu creates tolerogenic dendritic cells and TR1 and TH3 regulatory cells. Nature Immunol 2001; 2:671–672.

    CAS  Google Scholar 

  113. Shortman K, Heath WR. Immunity of tolerance? That is the question for dendritic cells. Nature Immunol 2001; 2:988–989.

    CAS  Google Scholar 

  114. Fu YX Chaplin DD. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 1999; 17:399–433.

    PubMed  CAS  Google Scholar 

  115. Yoshie O, Imai T, Nomiyama H. Chemokines in immunity. Adv Immunol 2001; 78:57–110.

    PubMed  CAS  Google Scholar 

  116. Jung S, Littman DR. Chemokine receptors in lymphoid organ homeostasis. Curr Opin Immunol 1999; 11:319–325.

    PubMed  CAS  Google Scholar 

  117. Körner H, Cook M, Riminton DS et al. Distinct roles for lymphotoxin-α and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue. Eur J Immunol 1997; 27:2600–2609.

    PubMed  Google Scholar 

  118. Ansel KM, Cyster JG. Chemokines in lymphopoiesis and lymphoid organ development. Curr Opinion Immunol 2001; 13:172–179.

    CAS  Google Scholar 

  119. Cook DN, Prosser DM, Forster R et al. CCR6 medicates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 2000; 12:495–503.

    PubMed  CAS  Google Scholar 

  120. Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 2000; 12:336–341.

    PubMed  CAS  Google Scholar 

  121. Ansel KM, Harris RBS, Cyster JG. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 2002; 16:67–76.

    PubMed  CAS  Google Scholar 

  122. Thoreux K, Owen RL, Schmucker DL. Intestinal lymphocyte number, migration and antibody secretion in young and old rats. Immunology 2000; 101:161–167.

    PubMed  CAS  Google Scholar 

  123. Koga T, McGhee JR, Kato H et al. Evidence for early aging in the mucosal immune system. J Immunol 2000; 165:5352–5359.

    PubMed  CAS  Google Scholar 

  124. Schmucker DL, Heyworth MF, Owen RL et al. Impact of aging on gastrointestinal mucosal immunity. Dig Dis Sci 1996; 41:1183–1193.

    PubMed  CAS  Google Scholar 

  125. Brandtzaeg P, Pabst R. Let’s go mucosal: communication on slippery ground. Trends Immunol 2004; 25:570–577.

    PubMed  CAS  Google Scholar 

  126. Pabst O, Herbrand H, Worbs T et al. Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur J Immunol 2005; 35:98–107.

    PubMed  CAS  Google Scholar 

  127. Eberl G, Littman DR. Thymic origin of intestinal αβT cells revealed by fate mapping of RORγt+ cells. Science 2004; 305:248–251.

    PubMed  CAS  Google Scholar 

  128. Guy-Grand D, Azogui O, Celli S et al. Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J Exp Med 2003; 197:333–341.

    PubMed  CAS  Google Scholar 

  129. Jang MH, Kweon MN, Iwatani K et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. PNAS 2004; 101:6110–6115.

    PubMed  CAS  Google Scholar 

  130. Guy-Grand D, Vassalli P. Tracing an orphan’s genealogy. Science 2004; 305:185–187.

    PubMed  CAS  Google Scholar 

  131. Sixt M, Kanazawa N, Seig M et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 2005; 22:19–29.

    PubMed  CAS  Google Scholar 

  132. Kobayashi H, Miura S, Nagata H et al. In situ demonstration of dendritic cell migration from rat intestine to mesenteric lymph nodes: relationships to maturation and role of chemokines. J Leukoc Biol 2004; 75:434–442.

    PubMed  CAS  Google Scholar 

  133. Bilsborough J, Viney JL. Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease. Gastroenterol 2004; 127:300–309.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Pabst, R., Rothkötter, H.J. (2006). Structure and Function of the Gut Mucosal Immune System. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_1

Download citation

Publish with us

Policies and ethics