Skip to main content

Rod and Cone Pigment Regeneration in RPE65 -/- Mice

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 572))

Abstract

RPE65 is a major protein in the retinal pigment epithelium (RPE) (Hamel et al., 1993), where it is required for the regeneration of 11-cis retinal, the native ligand of rod and cone opsins, in the dark (Redmond et al., 1998). Therefore, the retina of the Rpe65 -/- mouse is almost completely depleted of 11-cis retinal, resulting in a minimal level of photosensitivity. This observation poses several questions, of which we will only address three: first, which cell type (rods and/or cones) is responsible for the remaining photosensitivity; second, if only one cell type remains photosensitive, what happens to the other one; and third, what is the chromophore that enables the formation of light-sensitive pigment? Early reports have disagreed whether the remaining photosensitivity can be attributed to rod (Seeliger et al., 2001) or cone function (Redmond et al., 1998; Ekesten et al., 2001). Double knockout experiments, crossing the Rpe65 -/- with either the rhodopsin or the cone cGMP-gated channel knockout, respectively, revealed that the remaining photosensitivity in the young adult and old Rpe65 -/- mouse retina (>6 weeks-of-age) can be attributed to rod sensitivity (Seeliger et al., 2001). This leaves open the question as to the possible fate of the cone photoreceptors in the absence of RPE65. Likewise, early reports demonstrated a slow degeneration in particular of the rod photoreceptors (Redmond et al., 1998), suggesting that the accumulation of the retinyl ester in the RPE might contribute to the demise of the photoreceptors. However, in the Rpe65 -/-::Gnat1 -/- mouse, in which similar elevated amounts of retinyl ester have been reported to accumulate in the RPE, no rod degeneration occurs (Woodruff et al., 2003). And finally, with respect to the available chromophore; several groups have tried to obtain a spectrum of the pigment from pooled tissue and have failed to do so (Ablonzcy et al., 2001; C. H. Remé, personal communication). Thus, here we would like to further address these three key issues and how our laboratories have investigated them over the past 5 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablonczy, Z., Kono, M., Crouch, R. K., and Knapp, D. R., 2001, Mass spectrometric analysis of integral membrane proteins at the subnanomolar level: Application to recombinant photopigments. Anal Chem 73:4774–4779.

    Article  PubMed  CAS  Google Scholar 

  • Chapple, J. P., Grayson, C., Hardcastle, A. J., Saliba, R. S., van der Spuy, J. and Cheetham, M. E., 2001, Unfolding retinal dystrophies: A role for molecular chaperones? Trends Mol Med 7:414–421.

    Article  PubMed  CAS  Google Scholar 

  • Cicerone, C. M., 1976, Cones survive rods in the light-damaged eye of the albino rat. Science 194:1183–1185.

    Article  PubMed  CAS  Google Scholar 

  • Cornwall, M. C., and Fain, G. L., 1994, Bleached pigment activates transduction in isolated rods of the salamander retina. J Physiol 480:261–279.

    PubMed  CAS  Google Scholar 

  • Cornwall, M. C., Fein, A., and MacNichol Jr., E. F., 1990, Cellular mechanisms that underlie bleaching and background adaptation. J Gen Physiol 96:345–372.

    Article  PubMed  CAS  Google Scholar 

  • Cornwall, M. C., Matthews, H. R., Crouch, R. K., and Fain, G. L., 1995, Bleached pigment activates transduction in salamander cones. J Gen Physiol 106:543–557.

    Article  PubMed  CAS  Google Scholar 

  • Crouch, R. K., Znoiko, S., Kono, M., Rohrer, B., Goletz, P. W., Gresh, J., Redmond, T. M., and Ma, J. X., 2003, Can delivery of 11-cis retinal to the RPE65 KO mouse restore normal rod and cone function? Invest Ophthalmol Vis Sci 44-CD:PR# 44.

    Google Scholar 

  • Curcio, C. A., 2001, Photoreceptor topography in ageing and age-related maculopathy. Eye 15:376–383.

    PubMed  CAS  Google Scholar 

  • Ekesten, B., Gouras, P., and Salchow, D. J., 2001, Ultraviolet and middle wavelength sensitive cone responses in the electroretinogram (ERG) of normal and Rpe65-/- mice. Vision Res 41:2425–2433.

    Article  PubMed  CAS  Google Scholar 

  • Fain, G. L., and Lisman, J. E., 1993, Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis. Exp Eye Res 57:335–340.

    Article  PubMed  CAS  Google Scholar 

  • Fan, J., Rohrer, B., Moiseyev, G., Ma, J. X., and Crouch, R. K., 2003, Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc Natl Acad Sci U S A 100:13662–13667.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. K., and Steinberg, R. H., 1982, Origin and organization of pigment epithelial apical projections to cones in cat retina. J Comp Neurol 206:131–145.

    Article  PubMed  CAS  Google Scholar 

  • Gresh, J., Goletz, P. W., Crouch, R. K., and Rohrer, B., 2003, Structure-function analysis of rods and cones in juvenile, adult, and aged C57bl/6 and Balb/c mice. Vis Neurosci 20:211–220.

    Article  PubMed  Google Scholar 

  • Hamel, C. P., Tsilou, E., Harris, E., Pfeffer, B. A., Hooks, J. J., Detrick, B., and Redmond, T. M., 1993, A developmentally regulated microsomal protein specific for the pigment epithelium of the vertebrate retina. J Neurosci Res 34:414–425.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, C. J., Strettoi, E., and Masland, R. H., 1998, The major cell populations of the mouse retina. J Neurosci 18:8936–8946.

    PubMed  CAS  Google Scholar 

  • Katz, M. L., and Redmond, T. M., 2001, Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 42:3023–3030.

    PubMed  CAS  Google Scholar 

  • Mata, N. L., Radu, R. A., Clemmons, R. C., and Travis, G. H., 2003, Isomerization and oxidation of vitamin A in cone-dominant retinas: A novel pathway for visual-pigment regeneration in daylight. Neuron 36:69–80.

    Article  Google Scholar 

  • Matsumoto, H., Tokunaga, F., and Yoshizawa, T., 1975, Accessibility of the iodopsin chromophore. Biochim Biophys Acta 404:300–308.

    PubMed  CAS  Google Scholar 

  • Mendez, A., Lem, J., Simon, M., and Chen, J., 2003, Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling. J Neurosci 23:3124–3129.

    PubMed  CAS  Google Scholar 

  • Noorwez, S. M., Kuksa, V., Imanishi, Y., Zhu, L., Filipek, S., Palczewski, K., and Kaushal, S., 2003, Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 278:14442–14450.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, J. E., Gordon, J. W., Pawlyk, B. S., Roof, D., Hayes, A., Molday, R. S., Mukai, S., Cowley, G. S., Berson, E. L., and Dryja, T. P., 1992, Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa. Neuron 9:815–830.

    Article  PubMed  CAS  Google Scholar 

  • Redmond, T. M., Yu, S., Lee, E., Bok, D., Hamasaki, D., Chen, N., Goletz, P., Ma, J. X., Crouch, R. K. and Pfeifer, K., 1998, Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20:344–351.

    Article  PubMed  CAS  Google Scholar 

  • Rohrer, B., Goletz, P., Znoiko, S., Ablonczy, Z., Ma, J. X., Redmond, T. M., and Crouch, R. K., 2003, Correlation of regenerable opsin with rod ERG signal in Rpe65-/-mice during development and aging. Invest Ophthalmol Vis Sci 44:310–315.

    Article  PubMed  Google Scholar 

  • Seeliger, M. W., Grimm, C., Stahlberg, F., Friedburg, C., Jaissle, G., Zrenner, E., Guo, H., Reme, C. E., Humphries, P., Hofmann, F., Biel, M., Fariss, R. N., Redmond, T. M., and Wenzel, A., 2001, New views on RPE65 deficiency: The rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat Genet 29:70–74.

    Article  PubMed  CAS  Google Scholar 

  • Van Hooser, J. P., Aleman, T. S., He, Y. G., Cideciyan, A. V., Kuksa, V., Pittler, S.J., Stone, E. M., Jacobson, S. G., and Palczewski, K., 2000, Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci USA 97:8623–8628.

    Article  PubMed  Google Scholar 

  • Woodruff, M. L., Wang, Z., Chung, H. Y., Redmond, T. M., Fain, G. L., and Lem, J., 2003, Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat Genet 35:158–164.

    Article  PubMed  CAS  Google Scholar 

  • Znoiko, S. L., Crouch, R. K., Moiseyev, G., and Ma, J. X., 2002, Identification of the RPE65 protein in mammalian cone photoreceptors. Invest Ophthalmol Vis Sci 43:1604–1609.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Rohrer, B., Crouch1, R. (2006). Rod and Cone Pigment Regeneration in RPE65 -/- Mice. In: Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 572. Springer, Boston, MA. https://doi.org/10.1007/0-387-32442-9_16

Download citation

  • DOI: https://doi.org/10.1007/0-387-32442-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28464-4

  • Online ISBN: 978-0-387-32442-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics