Skip to main content

Gene Expression and Signaling Pathways by Extracellular Acidification

  • Conference paper

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 580))

Abstract

The respiratory response to extracellular acidosis by hypercapnia is mediated by central chemoreceptor neurons in the medulla oblongata [1]. There are actually two defined groups of respiratory neurons. The dorsal group of neurons is located in and near the nucleus of the tractus solitarius and their activity is regulated by changes in the arterial partial pressure of CO2 (Pco2), O2 (Po2) or H+. The ventral group is a long column of neurons that extends through the nucleus ambiguous and retroambiguous in the ventrolateral medulla. In addition to reacting to peripheral stimuli, the ventral neurons detect changes in the H+ and/or CO2 concentrations in the cerebrospinal fluid (CSF) and brain interstitial fluid [2]. The capacity to detect these changes is called central chemosensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loeschcke, H.H. J. Physiol., 1982, 332, 1.

    PubMed  CAS  Google Scholar 

  2. Ganong, W.F. Regulation of respiration; In Review of Medical Physiology; Ganong, W.F., ed. Appleton and Lange: Connecticut, 1999; pp 640–649.

    Google Scholar 

  3. Fukuda, Y.; Honda, Y. Pfluegers Arch., 1976, 364, 243.

    Article  CAS  Google Scholar 

  4. Schlaefke, M.E.; Pokorski, M.; See, W.R.; Prill, R.K.; Loeschcke, H.H. Physiopathol. Respir., 1975, 11, 277.

    Google Scholar 

  5. Fukuda, Y.; Honda, Y. Nature, 1975, 256, 317.

    Article  PubMed  CAS  Google Scholar 

  6. Schlaefke, M.E.; See, W.R.; Loeschcke, H.H. Respir. Physiol., 1970, 10, 198.

    Article  PubMed  CAS  Google Scholar 

  7. Cragg, P.; Patterson, L.; Purves, M.J. J. Physiol., 1977, 272, 137.

    PubMed  CAS  Google Scholar 

  8. Mitchell, R.A.; Loeschcke, H.H.; Massion, W.H.; Severinghaus, J.W. J. Appl. Physiol., 1963, 18, 523.

    CAS  Google Scholar 

  9. Krishtal, O.A; Pidoplichko, V.I. Neurosci. Lett., 1981, 24, 243.

    Article  PubMed  CAS  Google Scholar 

  10. Kovalchuk, Y.; Krishtal, O.A.; Nowycky, M.C. Neurosci. Lett., 1990, 115, 237.

    Article  PubMed  CAS  Google Scholar 

  11. Akaike, N.; Krishtal, O.A.; Maruyama, T. J. Neurophysiol., 1990, 63, 805.

    PubMed  CAS  Google Scholar 

  12. Bevan, S.; Geppetti, P. Trends Neurosci., 1994, 17, 509.

    Article  PubMed  CAS  Google Scholar 

  13. Waldmann, R.; Champigny, G.; Bassilana, F.; Heurteaux, C.; Lazdunski, M. Nature, 1997, 386, 173.

    Article  PubMed  CAS  Google Scholar 

  14. Ludwig, M.G.; Vanek, M.; Guerini, D.; Gasser, J.A.; Jones, C.E.; Junker, U.; Hofstetter, H.; Wolf, R.M.; Seuwen, K. Nature, 2003, 425, 93.

    Article  PubMed  CAS  Google Scholar 

  15. Liang, P.; Pardee, A.B. Science, 1992, 257, 967.

    Article  PubMed  CAS  Google Scholar 

  16. Miura, M.; Okada, J.; Kanazawa, M. Brain Res., 1998, 780, 34.

    Article  PubMed  CAS  Google Scholar 

  17. Sato, M.; Severinghaus, J.W.; Basbaum A.I. J. Appl. Physiol., 1992, 73, 96.

    PubMed  CAS  Google Scholar 

  18. Haxhiu, M.A.; Yung, K.; Erokwu, B.; Cherniack, N.S. Respir. Physiol., 1996, 105, 35.

    Article  PubMed  CAS  Google Scholar 

  19. Teppema, L.J.; Veening, J.G.; Kranenburg, A.; Dahan, A.; Berkenbosch, A.; Olievier, C. J. Comp. Neurol., 1997, 17, 169.

    Article  Google Scholar 

  20. Belegu, R.; Hadziefendic, S.; Dreshaj, I.A.; Haxhiu, M.A.; Martin R.J. Respir. Physiol., 1999, 117, 13.

    Article  PubMed  CAS  Google Scholar 

  21. Shimokawa, N.; Okada, J.; Miura, M. Mol. Cell. Biochem., 2000, 203, 135.

    Article  PubMed  CAS  Google Scholar 

  22. Kataoka, K.; Noda, M.; Nishizawa, N. Mol. Cell. Biol., 1994, 14, 700.

    PubMed  CAS  Google Scholar 

  23. Shimokawa, N.; Kumaki, I.; Takayama, K. Cell. Signal., 2001, 13, 835.

    Article  PubMed  CAS  Google Scholar 

  24. Shimokawa N, Kumaki I, Qiu CH, Ohmiya Y, Takayama K, Koibuchi N. J. Cell. Physiol., 2005, in press.

    Google Scholar 

  25. Shimokawa, N.; Okada, J.; Hugland, K.; Dikic, I.; Koibuchi, N.; Miura, M. J. Neurosci., 2002, 22, 9160.

    PubMed  CAS  Google Scholar 

  26. Pao, S.S.; Paulsen, I.T.; Saier, M.H. Mol. Biol. Rev., 1998, 62, 1.

    CAS  Google Scholar 

  27. Hardie, D.G.; Carling, D.; Carlson, M. Annu. Rev. Biochem., 1998, 67, 821.

    Article  PubMed  CAS  Google Scholar 

  28. Corton, J.M.; Gillespie, J.G.; Hardie, D.G. Curr. Biol., 1994, 4, 315.

    Article  PubMed  CAS  Google Scholar 

  29. Shimokawa, N.; Sugama, S.; Miura, M. Cell. Signal., 1998, 10, 499.

    Article  PubMed  CAS  Google Scholar 

  30. Anthony, R.M. Mol. Endocrinol., 2000, 14, 4.

    Article  Google Scholar 

  31. Kanazawa, M.; Sugama, S.; Okada, J.; Miura, M. J. Auton. Nerv. Syst., 1998, 72, 24.

    Article  PubMed  CAS  Google Scholar 

  32. Kuo, N.T.; Agani, F.H.; Haxhiu, M.A.; Chang, C.H. Respir. Physiol., 1998, 111, 127.

    Article  PubMed  CAS  Google Scholar 

  33. Shimokawa, N.; Qiu, C.H.; Seki, T.; Dikic, I.; Koibuchi, N. Cell. Signal., 2004, 16, 723.

    Article  PubMed  CAS  Google Scholar 

  34. Zanke, B.W.; Lee, C.; Arab, S.; Tannock, I.F. Cancer Res., 1998, 58, 2801.

    PubMed  CAS  Google Scholar 

  35. Yamamoto, D.; Uemura, Y.; Tanaka, K.; Nakai, K.; Yamamoto, C.; Takamoto, H.; Kamata, K.; Hirata, H.; Hioki, K. Int. J. Cancer, 2000, 88, 121.

    Article  PubMed  CAS  Google Scholar 

  36. Krishtal, O.A.; Pidoplichko, V.I. Neuroscience, 1980, 5, 2325.

    Article  PubMed  CAS  Google Scholar 

  37. Inoue, H; Kirschner, D.A. J. Neurosci. Res., 1991, 28, 1.

    Article  Google Scholar 

  38. Ueno, S.; Nakaye, T.; Akaike, N. J. Physiol., 1992, 447, 309.

    PubMed  CAS  Google Scholar 

  39. Akaike, N.; Ueno, S. Prog. Neurobiol., 1994, 43, 73.

    Article  PubMed  CAS  Google Scholar 

  40. Funaba, M.; Ikeda, T.; Ogawa, K.; Abe, M. Cell. Signal., 2003, 15, 605.

    Article  PubMed  CAS  Google Scholar 

  41. Werlen, G.; Jacinto, E.; Xia, Y.; Karin, M. EMBO J., 1998, 17, 3101.

    Article  PubMed  CAS  Google Scholar 

  42. Hawley, S.A.; Davison, M.; Woods, A.; Davies, S.P.; Beri, R.K.; Carling, D.; Hardie, D.G. J. Biol. Chem., 1996, 271, 27879.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

SHIMOKAWA, N., LONDOÑO, M., KOIBUCHI, N. (2006). Gene Expression and Signaling Pathways by Extracellular Acidification. In: Hayashida, Y., Gonzalez, C., Kondo, H. (eds) THE ARTERIAL CHEMORECEPTORS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 580. Springer, Boston, MA. https://doi.org/10.1007/0-387-31311-7_42

Download citation

Publish with us

Policies and ethics