Skip to main content

Acetogenic Prokaryotes

  • Reference work entry

1 Introduction to Acetogenic Bacteria and the Process of Acetogenesis

This chapter presents an overview of the history, taxonomy, phylogenetics, biochemistry, physiology, ecology, and applied aspects of acetogens. Acetogenic prokaryotes have only been found in the domain Bacteria. These prokaryotes utilize a reductive one-carbon pathway for the synthesis of acetyl-CoA, a metabolic precursor of both acetate and biomass. This pathway fixes CO2 and is termed “the acetyl-CoA pathway.” This pathway is often referred to as “the Wood-Ljungdahl pathway” in recognition of the two individuals, Harland G. Wood and Lars G. Ljungdahl, who were responsible for elucidating most of its enzymological features from the model acetogen Moorella thermoacetica (Fig. 1; see the section on Historical Perspectives in this Chapter). Acetogenesis (i.e., the process by which acetogens synthesize acetate) is often regarded as a fermentation process; however, as outlined in the subsection on CO2as Terminal...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Abrini, J., H. Naveau, and E.-J. Nyns. 1994 Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide Arch. Microbiol. 161 345–351

    Article  CAS  Google Scholar 

  • Adamse, A. D. 1980 New isolation of Clostridium aceticum (Wieringa) Ant. v. Leeuwenhoek 46 523–531

    Article  CAS  Google Scholar 

  • Adamse, A. D., and C. T. M. Velzeboer. 1982 Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol Ant. v. Leeuwenhoek 48 305–313

    Article  CAS  Google Scholar 

  • Albers, B. E., and J. G. Ferry. 1994 A carbonic anhydrase from the archaeon Methanosarcina thermophila Proc. Natl. Acad. Sci. USA 91 6909–6913

    Article  Google Scholar 

  • Anderson, R. T., F. H. Chapelle, and D. R. Lovley. 1998 Evidence against hydrogen-based microbial ecosystems in basalt aquifers Science 281 976–977

    Article  CAS  PubMed  Google Scholar 

  • Andreesen, J. R., G. Gottschalk, and H. G. Schlegel. 1970 Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum Arch. Microbiol. 72 154–174

    CAS  Google Scholar 

  • Andreesen, J. R., A. Schaupp, C. Neurauter, A. Brown, and L. G. Ljungdahl. 1973 Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: Effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2 J. Bacteriol. 114 743–751

    CAS  PubMed  Google Scholar 

  • Andreesen, J. R. 1994 Acetate via glycine: A different form of acetogenesis In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 568–629

    Chapter  Google Scholar 

  • Anonymous. 2002 Chem. Week 164 33

    Google Scholar 

  • Arendsen, A. F., M. Q. Soliman, and S. W. Ragsdale. 1999 Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum J. Bacteriol. 181 1489–1495

    CAS  PubMed  Google Scholar 

  • Aufurth, S., M. Madkour, F. Mayer, and V. Müller. 1998 Structure of the Na-driven flagellum from the homoacetogenic bacterium Acetobacterium woodii FEBS Lett. 434 325–328

    Article  CAS  PubMed  Google Scholar 

  • Bache, R., and N. Pfennig. 1981 Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields Arch. Microbiol. 130 255–261

    Article  CAS  Google Scholar 

  • Bak, F., K. Finster, and F. Rothfuß. 1992 Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria Arch. Microbiol. 157 529–534

    CAS  Google Scholar 

  • Balch, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977 Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria Int. J. Sys. Bacteriol. 27 355–361

    Article  CAS  Google Scholar 

  • Balk, M., J. Weijma, M. W. Friedrich, and A. J. M. Stams. 2003 Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor Arch. Microbiol. 179 315–320

    CAS  PubMed  Google Scholar 

  • Banerjee, R., and S. W. Ragsdale. 2003 The many faces of vitamin B12: Catalysis by cobalamin-dependent enzymes Ann. Rev. Biochem. 72 209–247

    Article  CAS  PubMed  Google Scholar 

  • Barik, S., S. Prieto, S. B. Harrison, E. C. Clausen, and J. L. Gaddy. 1988 Biological production of alcohols from coal through indirect liquefaction Appl. Biochem. Biotechnol. 18 363–378

    Article  CAS  Google Scholar 

  • Barker, H. A. 1944 On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum Proc. Natl. Acad. Sci. USA 30 88–90

    Article  CAS  PubMed  Google Scholar 

  • Barker, H. A., and M. D. Kamen. 1945 Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum Proc. Natl. Acad. Sci. USA 31 219–225

    Article  CAS  PubMed  Google Scholar 

  • Barlaz, M. A. 1997 Microbial studies of landfills and anaerobic refuse decomposition In: C. J. Hurst Manual of Environmental Microbiology ASM Press Washington, DC 541–557

    Google Scholar 

  • Baronofsky, J. J., W. J. A. Schreurs, and E. R. Kashket. 1984 Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum Appl. Environ. Microbiol. 48 1134–1139

    CAS  PubMed  Google Scholar 

  • Beaty, P. S., and L. G. Ljungdahl. 1990 Thiosulfate reduction by Clostridium thermoaceticum and Clostridium thermoautotrophicum during growth on methanol Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. I-7 199

    Google Scholar 

  • Beaty, P. S., and L. G. Ljungdahl. 1991 Growth of Clostridium thermoaceticum on methanol, ethanol, propanol, and butanol in medium containing either thiosulfate or dimethylsulfoxide Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. K-131 236

    Google Scholar 

  • Berman, M. H., and A. C. Frazer. 1992 Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers Appl. Environ. Microbiol. 58 925–931

    CAS  PubMed  Google Scholar 

  • Bernalier, A., M. Lelait, V. Rochet, J.-P. Grivet, G. R. Gibson, and M. Durand. 1996a Acetogenesis from H2 and CO2 by methane-and non-methane-producing human colonic bacterial communities FEMS Microbiol. Ecol. 19 193–202

    Article  CAS  Google Scholar 

  • Bernalier, A., V. Rochet, M. Leclerc, J. Doré, and P. Pochart. 1996b Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans Curr. Microbiol. 33 94–99

    Article  CAS  PubMed  Google Scholar 

  • Bernalier, A., A. Willems, M. Leclerc, V. Rochet, and M. D. Collins. 1996c Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces Arch. Microbiol. 166 176–183

    Article  CAS  PubMed  Google Scholar 

  • Boga, H., and A. Brune. 2003 Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts Appl. Environ. Microbiol. 69 779–786

    Article  CAS  PubMed  Google Scholar 

  • Boga, H. I., W. Ludwig, and A. Brune. 2003 Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from a soil-feeding termite Int. J. Syst. Evol. Microbiol. 53 1397–1404

    Article  CAS  PubMed  Google Scholar 

  • Bogdahn, M., J. R. Andreesen, and D. Kleiner. 1983 Pathways and regulation of N2, ammonium and glutamate assimilation by Clostridium formicoaceticum Arch. Microbiol. 134 167–169

    Article  CAS  Google Scholar 

  • Bomar, M., H. Hippe, and B. Schink. 1991 Lithotrophic growth and hydrogen metabolism by Clostridium magnum FEMS Microbiol. Lett. 83 347–350

    Article  CAS  Google Scholar 

  • Boone, D. R. 1991 Ecology of methanogenesis In: J. E. Rogers and W. B. Whitman Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes American Society for Microbiology Washington, DC 57–70

    Google Scholar 

  • Braker, G., J. Zhou, L. Lu, A. H. Devol, and J. M. Tiedje. 2000 Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities Appl. Environ. Microbiol. 66 2096–2104

    Article  CAS  PubMed  Google Scholar 

  • Bramlett, M. R., X. Tan, and P. A. Lindahl. 2003 Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper J. Am. Chem. Soc. 125 9316–9317

    Article  CAS  PubMed  Google Scholar 

  • Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992 Genesis of acetate and methane by gut bacteria of nutritionally diverse termites Science 257 1384–1387

    Article  CAS  PubMed  Google Scholar 

  • Braun, K., S. Schoberth, and G. Gottschalk. 1979 Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats Arch. Microbiol. 120 201–204

    Article  CAS  PubMed  Google Scholar 

  • Braun, K., and G. Gottschalk. 1981 Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum Arch. Microbiol. 128 294–298

    Article  CAS  PubMed  Google Scholar 

  • Braun, M., F. Mayer, and G. Gottschalk. 1981 Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide Arch. Microbiol. 128 288–293

    Article  CAS  PubMed  Google Scholar 

  • Braun, M., and G. Gottschalk. 1982 Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide Zbl. Bakt. Hyg. I. Abt. Orig. C3 368–376

    Google Scholar 

  • Braus-Stromeyer, S. A., C. Wagner, and H. L. Drake. 1996 Expression and localization of CO2-fixing enzymes during autotrophic growth by the acetogen Acetogenium kivuii Abstr. Ann. Meet. Am. Soc. for Microbiol. Abstr. K-162 563

    Google Scholar 

  • Braus-Stromeyer, S. A., G. Schnappauf, G. H. Braus, A. S. Gößner, and H. L. Drake. 1997 Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria J. Bacteriol. 179 7197–7200

    CAS  PubMed  Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986 Acetate synthesis from H2 plus CO2 by termite gut microbes Appl. Environ. Microbiol. 52 623–630

    CAS  PubMed  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988 Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites Arch. Microbiol. 150 282–288

    Article  CAS  Google Scholar 

  • Breznak, J. A., and M. D. Kane. 1990 Microbial H2/CO2 acetogenesis in animal guts: Nature and nutritional significance FEMS Microbiol. Rev. 87 309–314

    Article  CAS  Google Scholar 

  • Breznak, J. A., and J. Switzer Blum. 1991 Mixotrophy in the termite gut acetogen, Sporomusa termitida Arch. Microbiol. 156 105–110

    Article  CAS  Google Scholar 

  • Breznak, J. A. 1992 The genus Sporomusa In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer New York, NY 2016–2021

    Google Scholar 

  • Breznak, J. A. 1994 Acetogenesis from carbon dioxide in termite guts In: H. L. Drake (Ed.) Acetogenesis Chapmann and Hall New York, NY 303–330

    Chapter  Google Scholar 

  • Brock, T. D. 1989 Evolutionary relationships of the autotrophic bacteria In: H. G. Schlegel and B. Bowien Autotrophic Bacteria Science Tech Publishers Madison, WI 499–512

    Google Scholar 

  • Brulla, W. J., and M. P. Bryant. 1989 Growth of the syntrophic anaerobic acetogen, strain PA-1, with glucose or succinate as energy source Appl. Environ. Microbiol. 55 1289–1290

    CAS  PubMed  Google Scholar 

  • Brumm, P. J. 1988 Fermentation of single and mixed substrates by the parent and an acid-tolerant, mutant strain of Clostridium thermoaceticum Biotechnol. Bioengin. 32 444–450

    Article  CAS  Google Scholar 

  • Brune, A., D. Emerson, and J. A. Breznak. 1995 The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites Appl. Environ. Microbiol. 61 2681–2687

    CAS  PubMed  Google Scholar 

  • Brune, A., P. Frenzel, and H. Cypionka. 2000 Life at the oxic-anoxic interface: Microbial activities and adaptations FEMS Microbiol. Rev. 24 691–710

    CAS  PubMed  Google Scholar 

  • Bryant, M. P. 1979 Microbial methane production—theoretical aspects J. Anim. Sci. 48 193–201

    CAS  Google Scholar 

  • Budavari, S. (Ed.). 1989 The Merck Index, 18th ed Merck Rahway, NJ 792

    Google Scholar 

  • Busche, R. M. 1991 Extractive fermentation of acetic acid: Economic tradeoff between yield of Clostridium and concentration of Acetobacter Appl. Biochem. Biotechnol. 28/29 605–621

    Article  Google Scholar 

  • Buschhorn, H., P. Dürre, and G. Gottschalk. 1989 Production and utilization of ethanol by the homoacetogen Acetobacterium woodii Appl. Environ. Microbiol. 55 1835–1840

    CAS  PubMed  Google Scholar 

  • Byrer, D. E., F. A. Rainey, and J. Wiegel. 2000 Novel strains of Moorella thermoacetica form unusually heat-resistant spores Arch. Microbiol. 174 334–339

    Article  CAS  PubMed  Google Scholar 

  • Cato, E. P., W. L. George, and S. M. Finegold. 1986 Genus Clostridium Prazmowski 1880 In: P. H. A. Sneath (Ed.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 2 1141–1200

    Google Scholar 

  • Causey, T. B., S. Zhou, K. T. Shanmugam, and L. O. Ingram. 2003 Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production Proc. Natl. Acad. Sci. USA 100 825–832

    Article  CAS  PubMed  Google Scholar 

  • Chaucheyras, F., G. Fonty, G. Bertin, and P. Gouet. 1995 In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae Appl. Environ. Microbiol. 61 3466–3467

    CAS  PubMed  Google Scholar 

  • Cheryan, M., and S. Parekh. 1992 Acetate and calcium magnesium acetate (CMA) production with mutant strains of Clostridium thermoaceticum ATCC 49707 Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. O-39 315

    Google Scholar 

  • Cheryan, M., S. Parekh, M. Shah, and K. Witjitra. 1997 Production of acetic acid by Clostridium thermoaceticum Adv. Appl. Microbiol. 43 1–33

    Article  CAS  PubMed  Google Scholar 

  • Chidthaisong, A., B. Rosenstock, and R. Conrad. 1999 Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil Appl. Environ. Microbiol. 65 2350–2355

    CAS  PubMed  Google Scholar 

  • Chin, K.-J., and R. Conrad. 1995 Intermediary metabolism in methanogenic paddy soil and the influence of temperature FEMS Microbiol. Ecol. 18 85–102

    Article  CAS  Google Scholar 

  • Christiansen, N., and B. K. Ahring. 1996 Desulfitobacterium hafniense sp. nov., an anaerobic reductively dechloronating bacterium Int J. Syst. Bacteriol. 46 442–448

    Article  Google Scholar 

  • Clark, J. E., and L. G. Ljungdahl. 1984 Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum J. Biol. Chem. 259 10845–10849

    CAS  PubMed  Google Scholar 

  • Cleveland, L. R. 1925 The effect of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates Biol. Bull. 48 309–326

    Article  CAS  Google Scholar 

  • Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow. 1994 The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations Int. J. Syst. Bacteriol. 44 812–826

    Article  CAS  PubMed  Google Scholar 

  • Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989 Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment FEMS Microbiol. Ecol. 62 285–294

    Article  CAS  Google Scholar 

  • Conrad, R. 1993 Mechanisms controlling methane emission from wetland rice fields In: R. S. Oremalnd (Ed.) The Biogeochemistry of Global Change: Radiative Trace Gases Chapman and Hall New York, NY 317–335

    Chapter  Google Scholar 

  • Conrad, R. 1996 Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) Microbiol. Rev. 60 609–640

    CAS  PubMed  Google Scholar 

  • Cord-Ruwisch, R., and B. Ollivier. 1986 Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes Arch. Microbiol. 144 163–165

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988 The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor Arch. Microbiol. 149 350–357

    Article  CAS  Google Scholar 

  • Cunningham, D. P., and L. L. Lundie Jr. 1993 Precipitation of cadmium by Clostridium thermoaceticum Appl. Environ. Microbiol. 59 7–14

    CAS  PubMed  Google Scholar 

  • Cypionka, H. 2000 Oxygen respiration by Desulfovibrio species Ann. Rev. Microbiol. 54 827–848

    Article  CAS  Google Scholar 

  • Daniel, S. L., T. Hsu, S. I. Dean, and H. L. Drake. 1990 Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui J. Bacteriol. 172 4464–4471

    CAS  PubMed  Google Scholar 

  • Daniel, S. L., E. S. Keith, H. Yang, Y.-S. Lin, and H. L. Drake. 1991 Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: Expression and specificity of the CO-dependent O-demethylating activity Biochem. Biophys. Res. Commun. 180 416–422

    Article  CAS  PubMed  Google Scholar 

  • Daniel, S. L., and H. L. Drake. 1993 Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum Appl. Environ. Microbiol. 59 3062–3069

    CAS  PubMed  Google Scholar 

  • Daniel, S. L., C. Pilsl, and H. L. Drake. 2004 Oxalate metabolism by the acetogenic bacterium Moorella thermoacetica FEMS Microbiol. Lett. 231 39–43

    Article  CAS  PubMed  Google Scholar 

  • Darnault, C., A. Volberg, E. J. Kim, P. Legrand, X. Vernède, P. A. Lindahl, and J. C. Fontecilla-Camps. 2003 Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetylCoA synthase/carbon monoxide dehydrogenase Nature Struct. Biol. 10 271–279

    Article  CAS  PubMed  Google Scholar 

  • Das, A., J. Hugenholtz, H. van Halbeek, and L. G. Ljungdahl. 1989 Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum J. Bacteriol. 171 5823–5829

    CAS  PubMed  Google Scholar 

  • Das, A., D. M. Ivey, and L. G. Ljungdahl. 1997 Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic Gram-positive bacterium Clostridium thermoautotrophicum J. Bacteriol. 179 1714–1720

    CAS  PubMed  Google Scholar 

  • Das, A., and L. G. Ljungdahl. 2000 Acetogenesis and acetogenic bacteria In: J. Lederberg (Ed.) Encyclopedia of Microbiology, 2nd ed Academic Press San Diego, CA 1 18–27

    Google Scholar 

  • Das, A., E. D. Coulter, D. M. Kurtz Jr., and L. G. Ljungdahl. 2001 Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase—rubredoxin and rubrerythrin-type flavodoxin—high-molecular-weight rubredoxin J. Bacteriol. 183 1560–1567

    Article  CAS  PubMed  Google Scholar 

  • Das, A., and L. G. Ljungdahl. 2003 Electron transport systems in acetogens In: L. G. Ljungdahl, M. Adams, L. Barton, J. G. Ferry, and M. Johnson Biochemistry and Physiology of Anaerobic Bacteria Springer-Verlag New York, NY 191–204

    Chapter  Google Scholar 

  • Davidova, I. A., and A. J. M. Stams. 1996 Sulfate reduction with methanol by a thermophilic consortium obtained from a methanogenic reactor Appl. Microbiol. Biotechnol. 46 297–302

    Article  CAS  Google Scholar 

  • Davydova-Charakhch’yan, I. A., A. N. Mileeva, L. L. Mityushina, and S. S. Belyaev. 1992 Acetogenic bacteria from oil fields of Tataria and western Siberia Mikrobiologiya 61 306–315

    Google Scholar 

  • Dehning, I., M. Stieb, and B. Schink. 1989 Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate Arch. Microbiol. 151 421–426

    Article  CAS  Google Scholar 

  • DeWeerd, K. A., A. Saxena, D. P. Nagle Jr., and J. M. Suflita. 1988 Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria Appl. Environ. Microbiol. 54 1237–1242

    CAS  PubMed  Google Scholar 

  • Diekert, G., and R. K. Thauer. 1978 Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum J. Bacteriol. 136 597–606

    CAS  PubMed  Google Scholar 

  • Diekert, G., and M. Ritter. 1983 Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum FEBS Lett. 151 41–44

    Article  CAS  PubMed  Google Scholar 

  • Diekert, G., M. Hansch, and R. Conrad. 1984 Acetate synthesis from 2 CO2 in acetogenic bacteria: Is carbon monoxide an intermediate? Arch. Microbiol. 138 224–228

    Article  CAS  Google Scholar 

  • Diekert, G., E. Schrader, W. Harder. 1986 Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii Arch. Microbiol. 144 386–392

    Article  CAS  Google Scholar 

  • Diekert, G. 1992 The acetogenic bacteria In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer-Verlag New York, NY 517–533

    Google Scholar 

  • Diekert, G., and G. Wohlfarth. 1994a Energetics of acetogenesis from C1 units In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 157–179

    Chapter  Google Scholar 

  • Diekert, G., and G. Wohlfarth. 1994b Metabolism of homoacetogens Ant. v. Leeuwenhoek 66 209–221

    Article  CAS  Google Scholar 

  • Dobrindt, U., and M. Blaut. 1996 Purification and characterization of a membrane-bound hydrogenase from Sporomusa sphaeroides involved in energy-transducing electron transport Arch. Microbiol. 165 141–147

    Article  CAS  PubMed  Google Scholar 

  • Dolfing, J. 1988 Acetogenesis In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms Wiley New York, NY 417–468

    Google Scholar 

  • Doré, J., and M. P. Bryant. 1990 Metabolism of one-carbon compounds by the ruminal acetogen Syntrophococcus sucromutans Appl. Environ. Microbiol. 56 984–989

    PubMed  Google Scholar 

  • Doré, J., P. Pochart, A. Bernalier, I. Goderel, B. Morvan, and J. C. Rambaud. 1995 Enumeration of H2-utilizing methanogenic archaea, acetogenic and sulfate-reducing bacteria from human feces FEMS Microbiol. Ecol. 17 279–284

    Article  Google Scholar 

  • Dorn, M., J. R. Andreesen, and G. Gottschalk. 1978 Fermentation of fumarate and L-malate by Clostridium formicoaceticum J. Bacteriol. 133 26–32

    CAS  PubMed  Google Scholar 

  • Dörner, C., and B. Schink. 1991 Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium Arch. Microbiol. 156 302–306

    Article  Google Scholar 

  • Doukov, T. I., T. M. Iverson, J. Sevavalli, S. W. Ragsdale, and C. L. Drennan. 2002 Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase Science 298 567–572

    Article  CAS  PubMed  Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1980 Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum J. Biol. Chem. 255 7174–7180

    CAS  PubMed  Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1981a Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate: Properties of phosphotransacetylase J. Biol. Chem. 255 7174–7180

    Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1981b The synthesis of acetate from carbon monoxide plus methyltetrahydrofolate and the involvement of the nickel enzyme, CO dehydrogenase Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. K-42 144

    Google Scholar 

  • Drake, H. L. 1982 Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum J. Bacteriol. 150 702–709

    CAS  PubMed  Google Scholar 

  • Drake, H. L. 1992 Acetogenesis and acetogenic bacteria In: J. Lederberg (Ed.) Encyclopedia of Microbiology Academic Press San Diego, CA 1 1–15

    Google Scholar 

  • Drake, H. L. 1993 CO2, reductant, and the autrophic acetyl-CoA pathway: Alternative origins and destinations In: C. Murrell and D. P. Kelly Microbial Growth on C1 Compounds Intercept Ltd Andover, UK 493–507

    Google Scholar 

  • Drake, H. L. 1994 Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 3–60

    Chapter  Google Scholar 

  • Drake, H. L., S. L. Daniel, K. Küsel, C. Matthies, C. Kuhner, and S. Braus-Stromeyer. 1997 Acetogenic bacteria: What are the in situ consequences of their diverse metabolic versatilities? BioFactors 6 13–24

    Article  CAS  PubMed  Google Scholar 

  • Drake, H. L., K. Küsel, and C. Matthies. 2002 Ecological consequences of the phylogenetic and physiological diversities of acetogens Ant. v. Leeuwenhoek 81 203–213

    Article  CAS  Google Scholar 

  • Drake, H. L., and K. Küsel. 2003 How the diverse physiological potentials of acetogens determine their in situ realities In: L. G. Ljungdahl, M. Adams, L. Barton, J. G. Ferry, and M. Johnson Biochemistry and Physiology of Anaerobic Bacteria Springer-Verlag New York, NY 171–190

    Chapter  Google Scholar 

  • Drake, H. L., and S. L. Daniel. 2004 Physiology of the thermophilic acetogen Moorella thermoacetica Res. Microbiol. 155(6) 422–36

    Article  CAS  Google Scholar 

  • Drake, H. L., and K. Küsel. 2005 Acetogenic clostridia In: P. Dürre (ed.) Handbook on Clostridia CRC Press Boca Raton, FL 920

    Google Scholar 

  • Drent, W. J., and J. C. Gottschal. 1991 Fermentation of inulin by a new strain of Clostridium thermoautotrophicum isolated from dahlia tubers FEMS Microbiol. Lett. 78 285–292

    Article  CAS  Google Scholar 

  • Dumitru, R., H. Palencia, S. D. Schroeder, B. A. DeMontigny, J. M. Takacs, M. E. Rasche, J. L. Miner, and S. W. Ragsdale. 2003 Targeting methanopterin biosynthesis to inhibit methanogenesis Appl. Environ. Microbiol. 69 7236–7241

    Article  CAS  PubMed  Google Scholar 

  • Ebert, A., and A. Brune. 1997 Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar) Appl. Environ. Microbiol. 63 4039–4046

    CAS  PubMed  Google Scholar 

  • Eck, R., and H. Simon. 1994a Preparation of both enantiomers of malic and citramalic acid and other hydroxysuccinic acid derivatives by stereospecific hydrations of cis and trans 2-butene-1,4-dioic acids with resting cells of Clostridium formicoaceticum Tetrahedron 50 13641–13654

    Article  CAS  Google Scholar 

  • Eck, R., and H. Simon. 1994b Preparation of (S)-2-substituted succinates by stereospecific reductions of fumarate and derivatives with resting cells of Clostridium formicoaceticum Tetrahedron 50 13631–13640

    Article  CAS  Google Scholar 

  • Eden, G., and G. Fuchs. 1982 Total synthesis of acetyl coenzyme A involved in autotrophic CO2 fixation in Acetobacterium woodii Arch. Microbiol. 133 66–74

    Article  CAS  Google Scholar 

  • Eden, G., and G. Fuchs. 1983 Autotrophic CO2 fixation in Acetobacterium woodii II: Demonstration of enzymes involved Arch. Microbiol. 135 68–73

    Article  CAS  Google Scholar 

  • Egli, C., T. Tschan, R. Scholtz, A. M. Cook, and T. Leisinger. 1988 Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii Appl. Environ. Microbiol. 54 2819–2824

    CAS  PubMed  Google Scholar 

  • Eichler, B., and B. Schink. 1984 Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe Arch. Microbiol. 140 147–152

    Article  CAS  Google Scholar 

  • El Ghazzawi, E. 1967 Neuisolierung von Clostridium formicoaceticum Wieringa und stoffwechselphysiologische Untersuchungen Arch. Mikrobiol. 57 1–19

    Article  Google Scholar 

  • Emde, R., and B. Schink. 1987 Fermentation of triacetin and glycerol by Acetobacterium sp.: No energy is conserved by acetate excretion Arch. Microbiol. 149 142–148

    Article  CAS  Google Scholar 

  • Ezaki, T., N. Li, Y. Hashimoto, H. Miura, and H. Yamamoto. 1994 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov Int. J. Syst. Bacteriol. 44 130–136

    Article  CAS  PubMed  Google Scholar 

  • Ferry, J. G. 1994 CO Dehydrogenase in Methanogens In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 539–556

    Chapter  Google Scholar 

  • Fischer, F., R. Lieske, and K. Winzer. 1932 Biologische Gasreaktionen. II: Über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan Biochem. Zeitschr. 245 2–12

    Google Scholar 

  • Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942 A new type of glucose fermentation by Clostridium thermoaceticum n. sp J. Bacteriol. 43 701–715

    CAS  PubMed  Google Scholar 

  • Frank, C., U. Schwarz, C. Matthies, and H. L. Drake. 1998 Metabolism of aromatic aldehydes as co-substrates by the acetogen Clostridium formicoaceticum Arch. Microbiol. 170 427–434

    Article  CAS  PubMed  Google Scholar 

  • Frazer, A. C., and L. Y. Young. 1985 A Gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids Appl. Environ. Microbiol. 49 1345–1347

    CAS  PubMed  Google Scholar 

  • Frazer, A. C. 1994 O-demethylation and other transformations of aromatic compounds by acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 445–483

    Chapter  Google Scholar 

  • Freedman, D. L., and J. M. Gosset. 1991 Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions Appl. Environ. Microbiol. 57 2847–2857

    CAS  PubMed  Google Scholar 

  • Frings, J., and B. Schink. 1994a Fermentation of phenoxyethanol to phenol and acetate by a homoacetogenic bacterium Arch. Microbiol. 162 199–204

    Article  CAS  PubMed  Google Scholar 

  • Frings, J., C. Wondrak, and B. Schink. 1994b Fermentative degradation of triethanolamine by a homoacetogenic bacterium Arch. Microbiol. 162 103–107

    Article  CAS  PubMed  Google Scholar 

  • Fröstl, J. M., C. Seifritz, and H. L. Drake. 1996 Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum J. Bacteriol. 178 4597–4603

    PubMed  Google Scholar 

  • Fuchs, G., U. Schnitker, and R. K. Thauer. 1974 Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum Eur. J. Biochem. 49 111–115

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, G. 1986 CO2 fixation in acetogenic bacteria: Variations on a theme FEMS Microbiol. Rev. 39 181–213

    Article  CAS  Google Scholar 

  • Fuchs, G. 1989 Alternative pathways of autotrophic CO2 fixation In: H. G. Schlegel and B. Bowien Autotrophic Bacteria Science Tech Publishers Madison, WI 365–382

    Google Scholar 

  • Fuchs, G. 1990 Alternatives to the Calvin cycle and the Krebs cycle in anaerobic bacteria: Pathways with carbonylation chemistry In: G. Hauska and R. Thauer The Molecular Basis of Bacterial Metabolism Springer-Verlag Berlin, Germany 13–20

    Chapter  Google Scholar 

  • Fuchs, G. 1994 Variations of the acetyl-CoA pathway in diversely related microorganisms that are not acetogens In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 507–520

    Chapter  Google Scholar 

  • Furdui, C., and S. W. Ragsdale. 2000 The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway J. Biol. Chem. 275 28494–28499

    Article  CAS  PubMed  Google Scholar 

  • Gaston, L. W., and E. R. Stadtman. 1963 Fermentation of ethylene glycol by Clostridium glycolicum sp. n J. Bacteriol. 85 356–362

    CAS  PubMed  Google Scholar 

  • Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987 Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus Arch. Microbiol. 148 305–313

    Article  CAS  Google Scholar 

  • Geerligs, G., P. Schönheit, and G. Diekert. 1989 Sodium dependent acetate formation from CO2 in Peptostreptococcus productus (strain Marburg) FEMS Microbiol. Lett. 57 253–258

    CAS  Google Scholar 

  • Gilbert, B., and P. Frenzel. 1995 Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission Biol. Fertil. Soils 20 93–100

    Article  CAS  Google Scholar 

  • Gößner, A., S. L. Daniel, and H. L. Drake. 1994 Acetogenesis coupled to the oxidation of aromatic aldehyde groups Arch. Microbiol. 161 126–131

    Article  Google Scholar 

  • Gößner, A., and H. L. Drake. 1997 Characterization of a new thermophilic acetogen (PT-1) isolated from aggregated Kansas prairie soil Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. N-122 401

    Google Scholar 

  • Gößner, A. S., K. Kuesel, R. Devereux, and H. L. Drake. 1998 Occurrence of thermophilic acetogens in Egyptian soils Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. N-1 366

    Google Scholar 

  • Gößner, A., R. Devereux, N. Ohnemüller, G. Acker, E. Stackebrandt, and H. L. Drake. 1999 Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a facultative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica Appl. Environ. Microbiol. 65 5124–5133

    PubMed  Google Scholar 

  • Gottschalk, G., and M. Braun. 1981 Revival of the name Clostridium aceticum Int. J. Syst. Bacteriol. 31 476

    Article  Google Scholar 

  • Graber, J. R., and J. Breznak. 2004a Physiology and nutrition of Treponema primitia, an H2-CO2-acetogenic spirochete from termite hindguts Appl. Environ. Microbiol. 70 1307–1314

    Article  CAS  PubMed  Google Scholar 

  • Graber, J. R., J. R. Leadbetter, and J. Breznak. 2004b Description of Treponema azotonutricium sp. nov., and Treponema primitia sp. nov., the first spirochetes isolated from termite guts Appl. Environ. Microbiol. 70 1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Grahame, D. A. 2003 Acetate C-C bond formation and decomposition in the anaerobic world: The structure of a central enzyme and its key active-site metal cluster Trends Biochem. Sci. 28 221–224

    Article  CAS  PubMed  Google Scholar 

  • Greening, R. C., and J. A. Z. Leedle. 1989 Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: Acetogenic bacteria from the bovine rumen Arch. Microbiol. 151 399–406

    Article  CAS  PubMed  Google Scholar 

  • Grethlein, A. J., R. M. Worden, M. K. Jain, and R. Datta. 1991 Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum J. Ferment. Bioengin. 72 58–60

    Article  CAS  Google Scholar 

  • Grethlein, A. J., and M. K. Jain. 1992 Bioprocessing of coal-derived synthesis gases by anaerobic bacteria TIBTECH 10 418–423

    Article  CAS  Google Scholar 

  • Großkopf, R., S. Stubner, and W. Liesack. 1998 Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms Appl. Environ. Microbiol. 64 4983–4989

    Google Scholar 

  • Gunsalus, R. P., J. A. Romesser, and R. S. Wolfe. 1978 Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum Biochemistry 17 2374–2377

    Article  CAS  PubMed  Google Scholar 

  • Günther, H., K. Walter, P. Köhler, and H. Simon. 2000 On a new artificial mediator accepting NADP(H) oxidoreductase from Clostridium thermoaceticum J. Biotechnol. 83 253–267

    Article  PubMed  Google Scholar 

  • Häggblom, M. M., M. H. Berman, A. C. Frazer, and L. Y. Young. 1993 Anaerobic O-demethylation of chlorinated guaiacols by Acetobacterium woodii and Eubacterium limosum Biodegradation 4 107–114

    Article  Google Scholar 

  • Hall, I. C., and E. O’Toole. 1935 Intestinal florain newborn infants with a description of a new patogenic anaerobe, Bacillus difficilis Am. J. Dis. Child. 49 390–402

    Google Scholar 

  • Hansen, B., M. Bokranz, P. Schönheit, and A. Kröger. 1988 ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii Nzva16 Arch. Microbiol. 150 447–451

    Article  CAS  Google Scholar 

  • Harriott, O. T., and A. C. Frazer. 1997 Enumeration of acetogens by a colorimetric most-probable-number assay Appl. Environ. Microbiol. 63 296–300

    CAS  PubMed  Google Scholar 

  • Hashsham, S. A., and D. L. Freedman. 1999 Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose Appl. Environ. Microbiol. 65 4537–4542

    CAS  PubMed  Google Scholar 

  • Hattori, S., Y. Kamagata, S. Hanada, and H. Shoun. 2000 Thermoacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium Int. J. Syst. Evol. Microbiol. 50 1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Haveman, S. A., and K. Pedersen. 2002 Distribution of culturable microorganisms in Fennoscandian Shield groundwater FEMS Microbiol. Ecol. 39 129–137

    Article  CAS  PubMed  Google Scholar 

  • Heijthuijsen, J. H. F. G., and T. A. Hansen. 1986 Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria FEMS Microbiol. Ecol. 38 57–64

    Article  CAS  Google Scholar 

  • Heijthuijsen, J. H. F. G., and T. A. Hansen. 1989 Selection of sulphur sources for the growth of Butyribacterium methylotrophicum and Acetobacterium woodii Appl. Microbiol. Biotechnol. 32 186–192

    Article  CAS  Google Scholar 

  • Heinonen, J. K., and H. L. Drake. 1988 Comparative assessment of inorganic pyrophosphate and pyrophosphatase levels of Escherichia coli, Clostridium pasteurianum, and Clostridium thermoaceticum FEMS Microbiol. Lett. 52 205–208

    Article  CAS  Google Scholar 

  • Heise, R., V. Müller, and G. Gottschalk. 1989 Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii J. Bacteriol. 171 5473–5478

    CAS  PubMed  Google Scholar 

  • Heise, R., J. Reidlinger, V. Müller, and G. Gottschalk. 1991 A sodium-stimulated ATP synthase in the acetogenic bacterium Acetobacterium woodii FEBS Lett. 295 119–122

    Article  CAS  PubMed  Google Scholar 

  • Heise, R., V. Müller, and G. Gottschalk. 1992 Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii Eur. J. Biochem. 206 553–557

    Article  CAS  PubMed  Google Scholar 

  • Heise, R., V. Müller, and G. Gottschalk. 1993 Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient FEMS Microbiol. Lett. 112 261–268

    Article  CAS  Google Scholar 

  • Hermann, M., M.-R. Popoff, and M. Sebald. 1987 Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide Int. J. Sys. Bacteriol. 37 93–101

    Article  CAS  Google Scholar 

  • Hines, M. E., R. S. Evans, B. R. Sharak Genthner, S. G. Willis, S. Friedman, J. N. Rooney-Varga, and R. Devereux. 1999 Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora Appl. Environ. Microbiol. 65 2209–2216

    CAS  PubMed  Google Scholar 

  • Hippe, H., J. R. Andreesen, and G. Gottschalk. 1992 The genus Clostridium—nonmedical In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer New York, NY 1800–1866

    Google Scholar 

  • Hoehler, T. M., D. B. Albert, M. J. Alperin, and C. S. Martens. 1999 Acetogenesis from CO2 in an anoxic marine sediment Limnol. Oceanogr. 44 662–667

    Article  CAS  Google Scholar 

  • Holdeman, L. V., E. P. Cato, and W. E. C. Moore. 1977 Anaerobe Laboratory Manual, 4th ed Anaerobe Laboratory, Virginia Polytechnic Institute and State University Blacksburg, VI 1–156

    Google Scholar 

  • Holdeman-Moore, L. V., J. L. Johnson, and W. E. C. Moore. 1986 Genus Peptostreptococcus Kluyver and Van Niel 1936 In: P. H. A. Sneath (Ed.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 2 1083–1092

    Google Scholar 

  • Holliger, C., and G. Schraa. 1994 Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria FEMS Microbiol. Rev. 15 297–305

    Article  CAS  PubMed  Google Scholar 

  • Hsu, T., S. L. Daniel, M. F. Lux, and H. L. Drake. 1990a Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: Generation of growth-supportive CO2 equivalents under CO2-limited conditions J. Bacteriol. 172 212–217

    CAS  PubMed  Google Scholar 

  • Hsu, T., M. F. Lux, and H. L. Drake. 1990b Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum J. Bacteriol. 172 5901–5907

    CAS  PubMed  Google Scholar 

  • Hu, S.-I., H. L. Drake, and H. G. Wood. 1982 Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum J. Bacteriol. 149 440–448

    CAS  PubMed  Google Scholar 

  • Hu, S.-I., E. Pezacka, and H. G. Wood. 1984 Acetate synthesis from carbon monoxide by Clostridium thermoaceticum: Purification of the corrinoid protein J. Biol. Chem. 259 8892–8897

    CAS  PubMed  Google Scholar 

  • Huang, S., P. A. Lindahl, C. Wang, G. N. Bennett, F. B. Rudolph, and J. B. Hughes. 2000 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum Appl. Environ. Microbiol. 66 1474–1478

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz, J., D. M. Ivey, and L. G. Ljungdahl. 1987 Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes J. Bacteriol. 169 5845–5847

    CAS  PubMed  Google Scholar 

  • Hugenholtz, J., and L. G. Ljungdahl. 1989 Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum J. Bacteriol. 171 2873–2875

    CAS  PubMed  Google Scholar 

  • Hugenholtz, J., and L. G. Ljungdahl. 1990 Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum FEMS Microbiol. Lett. 69 117–122

    Article  CAS  Google Scholar 

  • Hungate, R. E. 1943 Quantitative analyses on the cellulose fermentation by termite protozoa Ann. Entomol. Soc. Am. 36 730–739

    CAS  Google Scholar 

  • Hungate, R. E. 1966 The Rumen and its Microbes Academic Press New York, NY

    Google Scholar 

  • Hungate, R. E. 1969 A roll tube method for cultivation of strict anaerobes In: J. R. Norris and D. W. Ribbons Methods in Microbiology Academic Press New York, NY 3B 117–132

    Google Scholar 

  • Hungate, R. E. 1976 The rumen fermentation In: H. G. Schlegel, G. Gottschalk, and N. Pfennig Microbial Production and Utilization of Gases Goltze Göttingen, Germany 119–124

    Google Scholar 

  • Ibba, M., and G. H. Fynn. 1991 Two stage methanogenesis of glucose by Acetogenium kivui and acetoclastic methanogenic sp Biotechnol. Lett. 13 671–676

    Article  CAS  Google Scholar 

  • Imkamp, F., and V. Müller. 2002 Chemiosmotic energy conservation with Na+ as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii J. Bacteriol. 184 1947–1951

    Article  CAS  PubMed  Google Scholar 

  • Inoue, K., S. Kageyama, K. Miki, T. Morinaga, Y. Kamagata, K. Nakamura, and E. Mikami. 1992 Vitamin B12 Production by Acetobacterium sp. and its tetrachloromethane-resistant mutants J. Ferment. Bioengin. 73 76–78

    Article  CAS  Google Scholar 

  • Ivey, D. M., and L. G. Ljungdahl. 1986 Purification and characterization of the F1-ATPase from Clostridium thermoaceticum J. Bacteriol. 165 252–257

    CAS  PubMed  Google Scholar 

  • Jansen, M., and T. A. Hansen. 2001 Non-growth-associated demethylation of dimethylsulfoniopropionate by (homo)acetogenic bacteria Appl. Environ. Microbiol. 67 300–306

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. S., I. B. Zhulin, M. E. Gapuzan, and B. L. Taylor. 1997 Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough J. Bacteriol. 179 5598–5601

    CAS  PubMed  Google Scholar 

  • Kamen, M. D. 1963 The early history of carbon-14 J. Chem. Ed. 40 234–242

    Article  CAS  Google Scholar 

  • Kamlage, B., and M. Blaut. 1993a Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups J. Bacteriol. 175 3043–3050

    CAS  PubMed  Google Scholar 

  • Kamlage, B., A. Boelter, and M. Blaut. 1993b Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates Arch. Microbiol. 159 189–196

    Article  CAS  Google Scholar 

  • Kamlage, B., B. Gruhl, and M. Blaut. 1997 Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides Appl. Environ. Microbiol. 63 1732–1738

    CAS  PubMed  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991a Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis Arch. Microbiol. 156 91–98

    Article  CAS  PubMed  Google Scholar 

  • Kane, M. D., A. Brauman, and J. A. Breznak. 1991b Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus Arch. Microbiol. 156 99–104

    Article  CAS  Google Scholar 

  • Kaneuchi, C., Y. Benno, and T. Mitsuoka. 1976 Clostridium coccoides, a new species from the feces of mice Int. J. Syst. Bacteriol. 26 482–486

    Article  Google Scholar 

  • Kappler, O., P. H. Janssen, J.-U. Kreft, and B. Schink. 1997 Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida Microbiology 143 1105–1114

    Article  CAS  Google Scholar 

  • Karita, S., K. Nakayama, M. Goto, K. Sakka, W.-J. Kim, and S. Ogawa. 2003 A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21 Biosci. Biotechnol. Biochem. 67 183–185

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, J. L., B. E. Volcani, and H. A. Barker. 1948 The nutritional requirements of Clostridium aceticum J. Bacteriol. 56 781–782

    CAS  Google Scholar 

  • Karnholz, A., K. Küsel, A. Gößner, A. Schramm, and H. L. Drake. 2002 Tolerance and metabolic response of acetogenic bacteria toward oxygen Appl. Environ. Microbiol. 68 1005–1009

    Article  CAS  PubMed  Google Scholar 

  • Karrasch, M., M. Bott, and R. K. Thauer. 1989 Carbonic anhydrase activity in acetate grown Methanosarcina barkeri Arch. Microbiol. 151 137–142

    Article  CAS  Google Scholar 

  • Kaufmann, F., G. Wohlfarth, and G. Diekert. 1997 Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC Arch. Microbiol. 168 136–142

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann, F., G. Wohlfarth, and G. Diekert. 1998 O-demethylase from Acetobacterium dehalogenans, substrate specificity and function of the participating proteins Eur. J. Biochem. 253 706–711

    Article  CAS  PubMed  Google Scholar 

  • Kellum, R., and H. L. Drake. 1984 Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum J. Bacteriol. 160 466–469

    CAS  PubMed  Google Scholar 

  • Kellum, R., and H. L. Drake. 1986 Effects of carbon monoxide on one-carbon enzymes and energetics of Clostridium thermoaceticum FEMS Microbiol. Lett. 34 41–45

    Article  CAS  Google Scholar 

  • Kerby, R., and J. G. Zeikus. 1983 Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source Curr. Microbiol. 8 27–30

    Article  CAS  Google Scholar 

  • Kerby, R., and J. G. Zeikus. 1987 Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum J. Bacteriol. 169 2063–2068

    CAS  PubMed  Google Scholar 

  • Kim, J. S., H. Kim, K. Oh, and Y. S. Kim. 2002 Acetic acid production using xylose and corn steep liquor by Clostridium thermoaceticum strain J. Indust. Engin. Chem. 8 519–523

    CAS  Google Scholar 

  • Kisker, C., H. Schindelin, B. E. Alber, J. G. Ferry, and D. C. Rees. 1996 A left-handed β-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila EMBO J. 15 2323–2330

    CAS  PubMed  Google Scholar 

  • Klemps, R., H. Cypionka, F. Widdel, and N. Pfennig. 1985 Growth with hydrogen, and further physiological characteristics of Desulfotomaculum sp Arch. Microbiol. 143 203–208

    Article  CAS  Google Scholar 

  • Klemps, R., S. M. Schoberth, and H. Sahm. 1987 Production of acetic acid by Acetogenium kivui Appl. Microbiol. Biotechnol. 27 229–234

    Article  CAS  Google Scholar 

  • Koesnandar, N. Nishio, A. Yamamoto, and S. Nagai. 1991 Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum J. Ferment. Bioengin. 72 11–14

    Article  CAS  Google Scholar 

  • Kotelnikova, S., and K. Pedersen. 1997 Evidence for methanogenic Archaea and homoacetogenic bacteria in deep granitic rock aquifers FEMS Microbiol. Rev. 20 339–349

    Article  CAS  Google Scholar 

  • Kotelnikova, S., and K. Pedersen. 1998 Distribution and activity of methanogens in deep granitic aquifers at Äspö Hard Rock Laboratory, Sweden FEMS Microbiol. Ecol. 26 21–134

    Google Scholar 

  • Kotelnikova, S. 2002 Microbial production and oxidation of methane in deep subsurface Earth Sci. Rev. 58 367–395

    Article  CAS  Google Scholar 

  • Kotsyurbenko, O. R., M. V. Simankova, N. P. Bolotina, T. N. Zhilina, and A. N. Nozhevnikova. 1992 Psychrotrophic homoacetogenic bacteria from several environments Abstr. 7th Int. Symp. C1 Compounds Abstr. C136

    Google Scholar 

  • Kotsyurbenko, O. R., M. V. Simankova, A. N. Nozhevnikova, T. N. Zhilina, N. P. Bolotina, A. M. Lysenko, and G. A. Osipov. 1995 New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov Arch. Microbiol. 163 29–34

    Article  CAS  Google Scholar 

  • Kotsyurbenko, O. R., A. N. Nozhevnikova, T. I. Soloviova, and G. A. Zavarin. 1996 Methanogenesis at low temperatures by microflora of tundra wetland soil Ant. v. Leeuwenhoek 69 75–86

    Article  CAS  Google Scholar 

  • Kreft, J.-U., and B. Schink. 1993 Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4 Arch. Microbiol. 159 308–315

    Article  CAS  Google Scholar 

  • Kreft, J.-U., and B. Schink. 1997 Specificity of O-demethylation in extracts of the homoacetogenic Holophaga foetida and demethylation kinetics measured by a coupled photometric assay Arch. Microbiol. 167 363–368

    Article  Google Scholar 

  • Krumböck, M., and R. Conrad. 1991 Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment FEMS Microbiol. Ecol. 85 247–256

    Article  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1985 Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate Int. J. Sys. Bacteriol. 35 454–456

    Article  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1986 Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems Arch. Microbiol. 143 313–318

    Article  CAS  Google Scholar 

  • Krumholz, L. R., J. P. McKinley, G. A. Ulrich, and J. M. Suflita. 1997 Confined subsurface microbial communities in Cretaceous rock Nature 386 64–66

    Article  CAS  Google Scholar 

  • Krumholz, L. R., S. H. Harris, S. T. Tay, and S. M. Suflita. 1999 Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles Appl. Environ. Microbiol. 65 2300–2306

    CAS  PubMed  Google Scholar 

  • Krumholz, L. R. 2000 Microbial communities in the deep subsurface Hydrogeol. J. 8 4–10

    Google Scholar 

  • Kuever, J., J. Kulmer, S. Jannsen, U. Fischer, and K.-H. Blotevogel. 1993 Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol Arch. Microbiol. 159 282–288

    Article  CAS  PubMed  Google Scholar 

  • Kuever, J., F. A. Rainey, and H. Hippe. 1999 Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov Int. J. Syst. Bacteriol. 49 1801–1808

    Article  CAS  PubMed  Google Scholar 

  • Kuhner, C. H., C. Frank, A. Grießhammer, M. Schmittroth, G. Acker, A. Gößner, and H. L. Drake. 1997 Sporomusa silvacetica sp. nov., an actogenic bacterium isolated from aggregated forest soil Int. J. Syst. Bacteriol. 47 352–358

    Article  CAS  PubMed  Google Scholar 

  • Kuhner, C. H., C. Matthies, G. Acker, M. Schmittroth, A. S. Gößner, and H. L. Drake. 2000 Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: Acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter Int. J. Syst. Evol. Microbiol. 50 873–881

    Article  CAS  PubMed  Google Scholar 

  • Kurtz Jr., D. M. 2003 Oxygen and anaerobes In: L. G. Ljungdahl, M. Adams, L. Barton, J. G. Ferry, and M. Johnson Biochemistry and Physiology of Anaerobic Bacteria Springer-Verlag New York, NY 128–142

    Chapter  Google Scholar 

  • Küsel, K., and H. L. Drake. 1994 Acetate synthesis in soil from a Bavarian beech forest Appl. Environ. Microbiol. 60 1370–1373

    PubMed  Google Scholar 

  • Küsel, K., and H. L. Drake. 1995 Effects of environmental parameters on the formation and turnover of acetate by forest soils Appl. Environ. Microbiol. 61 3667–3675

    PubMed  Google Scholar 

  • Küsel, K., and H. L. Drake. 1996 Anaerobic capacities of leaf litter Appl. Environ. Microbiol. 62 4216–4219

    PubMed  Google Scholar 

  • Küsel, K., and H. L. Drake. 1999a Microbial turnover of low molecular weight organic acids during leaf litter decomposition Soil Biol. Biochem. 31 107–118

    Article  Google Scholar 

  • Küsel, K., H. C. Pinkart, H. L. Drake, and R. Devereux. 1999b Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii Appl. Environ. Microbiol. 65 5117–5123

    PubMed  Google Scholar 

  • Küsel, K., C. Wagner, and H. L. Drake. 1999c Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest FEMS Microbiol. Ecol. 29 91–103

    Article  Google Scholar 

  • Küsel, K., T. Dorsch, G. Acker, E. Stackebrandt, and H. L. Drake. 2000 Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments Int. J. Syst. Evol. Microbiol. 50 537–546

    Article  PubMed  Google Scholar 

  • Küsel, K., A. Karnholz, T. Trinkwalter, R. Devereux, G. Acker, and H. L. Drake. 2001 Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots Appl. Environ. Microbiol. 67 4734–4741

    Article  PubMed  Google Scholar 

  • Küsel, K., C. Wagner, T. Trinkwalter, A. S. Gößner, R. Bäumler, and H. L. Drake. 2002 Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils FEMS Microbiol. Ecol. 40 73–81

    Article  PubMed  Google Scholar 

  • Küsel, K., A. Gößner, C. R. Lovell, and H. L. Drake. 2003 Ecophysiology of an aerotolerant acetogen, Sporomusa ST-1, isolated from Juncus roots Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. Q-375 582

    Google Scholar 

  • Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988 Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces Appl. Environ. Microbiol. 54 2723–2727

    CAS  PubMed  Google Scholar 

  • Laopaiboon, R., and R. S. Tanner. 1999 Effect of nitrate on acetogenesis by Clostridium ljungdahlii Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. K-18 404

    Google Scholar 

  • Leadbetter, J. R., and J. A. Breznak. 1996 Physiological Ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes Appl. Environ. Microbiol. 62 3620–3631

    CAS  PubMed  Google Scholar 

  • Leadbetter, J. R., T. M. Schmidt, J. R. Graber, and J. A. Breznak. 1999 Acetogenesis from H2 plus CO2 by sprirochetes from termite guts Science 283 686–689

    Article  CAS  PubMed  Google Scholar 

  • Leaphart, A., and C. R. Lovell. 2001 Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria Appl. Environ. Microbiol. 67 1392–1395

    Article  CAS  PubMed  Google Scholar 

  • Leaphart, A. B., H. T. Spencer, and C. R. Lovell. 2002 Site-directed mutagenesis of a potential catalytic and formyl phosphate binding site and substrate inhibition of N-10-formyltetrahydrofolate synthetase Arch. Biochem. Biophys. 408 137–143

    Article  CAS  PubMed  Google Scholar 

  • Leaphart, A. B., M. J. Friez, and C. R. Lovell. 2003 Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups Appl. Environ. Microbiol. 69 693–696

    Article  CAS  PubMed  Google Scholar 

  • Lebloas, P., P. Loubiere, and N. D. Lindley. 1994 Use of unicarbon substrate mixtures to modify carbon flux improves vitamin B12 production with the acetogenic methylotroph Eubacterium limosum Biotechnol. Lett. 16 129–132

    Article  CAS  Google Scholar 

  • Leclerc, M., A. Bernalier, G. Donadille, and M. Lelait. 1997a H2/CO2 metabolism in acetogenic bacteria isolted from the human colon Anaerobe 3 307–315

    Article  CAS  PubMed  Google Scholar 

  • Leclerc, M., A. Bernalier, M. Lelait, and J.-P. Grivet. 1997b 13C-NMR study of glucose and pyruvate catabolism in four acetogenic species isolated from the human colon FEMS Microbiol. Lett. 146 199–204

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988 Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO22 Appl. Environ. Microbiol. 54 124–129

    CAS  PubMed  Google Scholar 

  • Leedle, J. A. Z., and R. C. Greening. 1988 Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high-or low-forage diets once daily Appl. Environ. Microbiol. 54 502–506

    CAS  PubMed  Google Scholar 

  • Leedle, J. A. Z., J. Lotrario, J. Hovermale, and A. M. Craig. 1995 Forestomach anaerobic microflora of the bowhead whale (Balaena mysticetus) Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. N-8 334

    Google Scholar 

  • Leigh, J. A., F. Mayer, and R. S. Wolfe. 1981 Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium Arch. Microbiol. 129 275–280

    Article  CAS  Google Scholar 

  • Lentz, K., and H. G. Wood. 1955 Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum J. Biol. Chem. 215 645–654

    CAS  PubMed  Google Scholar 

  • Le Ruyet, P., H. C. Dubourguier, abd G. Albagnac. 1984 Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui Appl. Environ. Microbiol. 48 893–894

    PubMed  Google Scholar 

  • Liesack, W., F. Bak, J.-U. Kreft, and E. Stackebrandt. 1994 Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds Arch. Microbiol. 162 85–90

    CAS  PubMed  Google Scholar 

  • Lilburn, T. G., T. M. Schmidt, and J. A. Breznak. 1999 Phylogenetic diversity of termite gut spirochaetes Environ. Microbiol. 1 331–345

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, P. A., and B. Chang. 2001 The evolution of acetyl-CoA synthase Orig. Life Evol. Biosph. 31 403–434

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, P. A. 2002 The Ni-containing carbon monoxide dehydrogenase family: Light at the end of the tunnel? Biochemistry (Moscow) 41 2097–2105

    CAS  Google Scholar 

  • Lindskog, S., L. E. Henderson, K. K. Kannan, A. Liljas, and P. O. B. Strandberg. 1971 Carbonic anhydrase The Enzymes 5 587–665

    Article  CAS  Google Scholar 

  • Liu, C.-L., N. Hart, and H. D. Peck Jr. 1982 Inorganic pyrophosphate: Energy source for sulfate-reducing bacteria of the genus Desulfotomaculum Science 217 363–364

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., and J. M. Suflita. 1993 H2/CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium Appl. Environ. Microbiol. 59 1325–1331

    CAS  PubMed  Google Scholar 

  • Ljungdahl, L., and H. G. Wood. 1965 Incorporation of C14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum J. Bacteriol. 89 1055–1064

    CAS  PubMed  Google Scholar 

  • Ljungdahl, L., E. Irion, and H. G. Wood. 1966 Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum Fed. Proceed. 25 1642–1648

    CAS  Google Scholar 

  • Ljungdahl, L. G., and H. G. Wood. 1969 Total synthesis of acetate from CO2 by heterotrophic bacteria Ann. Rev. Microbiol. 23 515–538

    Article  CAS  Google Scholar 

  • Ljungdahl, L. G., and K.-E. Eriksson. 1985 Ecology of microbial cellulose degradation Adv. Microb. Ecol. 8 237–299

    Article  CAS  Google Scholar 

  • Ljungdahl, L. G., L. H. Carreira, and R. J. Garrison, N. E. Rabek, and J. Wiegel. 1985 Comparison of three thermophilic acetogenic bacteria for production of calcium magnesium acetate Biotechnol. Bioengin. Symp. 15 207–223

    Google Scholar 

  • Ljungdahl, L. G. 1986 The autotrophic pathway of acetate synthesis in acetogenic bacteria Ann. Rev. Microbiol. 40 415–450

    Article  CAS  Google Scholar 

  • Ljungdahl, L. G., J. Hugenholtz, and J. Wiegel. 1989 Acetogenic and acid-producing clostridia In: N. P. Minton and D. J. Clarke Clostridia Plenum Press New York, NY 145–191

    Google Scholar 

  • Ljungdahl, L. G. 1994 The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 63–87

    Chapter  Google Scholar 

  • Loke, H. K., and P. A. Lindahl. 2003 Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum J. Inorg. Biochem. 93 33–40

    Article  CAS  PubMed  Google Scholar 

  • Lorowitz, W. H., and M. P. Bryant. 1984 Peptostreptococcus productus strain that grows rapidly with CO as the energy source Appl. Environ. Microbiol. 47 961–964

    CAS  PubMed  Google Scholar 

  • Loubiere, P., E. Gros, V. Paquet, and N. D. Lindley. 1992 Kinetics and physiological implications of the growth behaviour of Eubacterium limosum on glucose/methanol mixtures J. Gen. Microbiol. 138 979–985

    Article  CAS  Google Scholar 

  • Lovell, C. R., A. Przybyla, and L. G. Ljungdahl. 1990 Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum Biochemistry 29 5687–5694

    Article  CAS  PubMed  Google Scholar 

  • Lovell, C. R., and Y. Hui. 1991 Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria Appl. Environ. Microbiol. 57 2602–2609

    CAS  PubMed  Google Scholar 

  • Lovell, C. R. 1994 Development of DNA probes for the detection and identification of acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 236–253

    Chapter  Google Scholar 

  • Lovell, C. R., Y. M. Piceno, J. M. Quattro, and C. E. Bagwell. 2000 Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass Spartina alterniflora Appl. Environ. Microbiol. 66 3814–3822

    Article  CAS  PubMed  Google Scholar 

  • Lowe, A., M. K. Jain, and J. G. Zeikus. 1993 Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to envionmental stresses in temperature, pH, salinity, or substrates Microbiol. Rev. 57 451–509

    CAS  PubMed  Google Scholar 

  • Ludwig, W., S. H. Bauer, M. Bauer, I. Held, G. Kirchhof, R. Schulze, I. Huber, S. Spring, A. Hartmann, and K.-H. Schleifer. 1997 Detection of in situ identification of representatives of a widely distributed new bacterial phylum FEMS Microbiol. Lett. 153 181–190

    Article  CAS  PubMed  Google Scholar 

  • Lumppio, H. L., N. V. Shenvi, A. O. Summers, G. Voordrouw, and D. M. Kurtz Jr. 2001 Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: A novel oxidative stress protection system J. Bacteriol. 183 101–108

    Article  CAS  PubMed  Google Scholar 

  • Lundie Jr., L. L., and H. L. Drake. 1984 Development of a minimally defined medium for the acetogen Clostridium thermoaceticum J. Bacteriol. 159 700–703

    CAS  PubMed  Google Scholar 

  • Lupas, A., H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister. 1994 Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis J. Bacteriol. 176 1224–1233

    CAS  PubMed  Google Scholar 

  • Lux, M. F., E. Keith, T. Hsu, and H. L. Drake. 1990 Biotransformation of aromatic aldehydes by acetogenic bacteria FEMS Microbiol. Lett. 67 73–78

    Article  CAS  Google Scholar 

  • Lux, M. F., and H. L. Drake. 1992 Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: Chemolithoautotrophic and aromatic-dependent growth FEMS Microbiol. Lett. 95 49–56

    Article  CAS  Google Scholar 

  • Lynd, L., R. Kerby, and J. G. Zeikus. 1982 Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum J. Bacteriol. 149 255–263

    CAS  PubMed  Google Scholar 

  • Lynd, L. H., and J. G. Zeikus. 1983 Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum J. Bacteriol. 153 1415–1423

    CAS  PubMed  Google Scholar 

  • Mackie, R. I., and M. P. Bryant. 1994 Acetogenesis and the rumen: Syntrophic relationships In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 331–364

    Chapter  Google Scholar 

  • Madsen, T., and D. Licht. 1992 Isolation and characterization of an anaerobic chlorophenol-transforming bacterium Appl. Environ. Microbiol. 58 2874–2878

    CAS  PubMed  Google Scholar 

  • Marschall, C., P. Frenzel, and H. Cypionka. 1993 Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria Arch. Microbiol. 159 168–173

    Article  CAS  Google Scholar 

  • Martin, D. R., L. L. Lundie, R. Kellum, and H. L. Drake. 1983 Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum Curr. Microbiol. 8 337–340

    Article  CAS  Google Scholar 

  • Martin, D. R., A. Misra, and H. L. Drake. 1985 Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum Appl. Environ. Microbiol. 49 1412–1417

    CAS  PubMed  Google Scholar 

  • Matthies, C., A. Freiberger, and H. L. Drake. 1993 Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum Arch. Microbiol. 160 273–278

    Article  CAS  Google Scholar 

  • Matthies, C., C. H. Kuhner, G. Acker, and H. L. Drake. 2001 Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments Int. J. Syst. Evol. Microbiol. 51 1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Mayer, F., J. I. Elliott, D. Sherod, and L. G. Ljungdahl. 1982 Formyltetrahydrofolate synthetase from Clostridium thermoaceticum Eur. J. Biochem. 124 397–404

    Article  CAS  PubMed  Google Scholar 

  • Maynard, E. L., and P. A. Lindahl. 1999 Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum J. Am. Chem. Soc. 121 9221–9222

    Article  CAS  Google Scholar 

  • Maynard, E. L., and P. A. Lindahl. 2001 Catalytic coupling of the active sites in acetyl-CoA synthase, a bifunctional CO-channeling enzyme Biochemistry 40 13262–13267

    Article  CAS  PubMed  Google Scholar 

  • McInerney, M. J., and M. P. Bryant. 1981 Basic principles of bioconversions in anaerobic digestion and methanogenesis In: S. S. Sofer and O. R. Zaborsky Biomass Conversion Processes for Energy and Fuels Plenum Press New York, NY 277–296

    Chapter  Google Scholar 

  • Mechichi, T., M. Labat, T. H. S. Woo, P. Thomas, J.-L. Garcia, and B. K. C. Patel. 1998 Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor Anaerobe 4 283–291

    Article  CAS  PubMed  Google Scholar 

  • Mechichi, T., M. Labat, B. K. C. Patel, T. H. S. Woo, P. Thomas, and J.-L. Garcia. 1999 Clostridium methoxybenzovorans sp. nov., a new aromatic O-demethylating homoacetogen from an olive mill wastewater treatment digester Int. J. Syst. Bacteriol. 49 1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Menzel, U., and G. Gottschalk. 1985 The internal pH of Acetobacterium wieringae and Acetobacter aceti during growth and production of acetic acid Arch. Microbiol. 143 47–51

    Article  CAS  Google Scholar 

  • Meßmer, M., G. Wohlfarth, and G. Diekert. 1993 Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC Arch. Microbiol. 160 383–387

    Article  Google Scholar 

  • Meßmer, M., S. Reinhardt, G. Wohlfarth, and G. Diekert. 1996 Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assay Arch. Microbiol. 165 18–25

    Article  Google Scholar 

  • Meyer, O. 1988 Biology and biotechnology of aerobic carbon monoxide-oxidising bacteria In: M. Schlingmann, W. Crueger, K. Esser, R. Thauer, and F. Wagner Biotechnology Focus Hanser Publishers Munich, Germany, 1 3–31

    Google Scholar 

  • Meyer, O., K. Frunzke, and G. Mörsdorf. 1993 Biochemistry of the aerobic utilization of carbon monoxide In: J. C. Murrell and D. P. Kelly Microbial Growth on C1 Compounds Intercept Ltd. Andover, UK 433–459

    Google Scholar 

  • Meyer, O., L. Gremer, R. Ferner, M. Ferner, H. Dobbek, M. Gnida, W. Meyer-Klaucke, and R. Huber. 2000 The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase Biol. Chem. 381 865–876

    Article  CAS  PubMed  Google Scholar 

  • Mikx, F. H. M. 1997 Environmental effects on the growth and proteolysis of Treponema denticola ATCC 33520 Oral Microbiol. Immunol. 12 249–253

    Article  CAS  PubMed  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1982 Enumeration of Methanobrevibacter smithii in human feces Arch. Microbiol. 141 116–122

    Article  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1995 Bioconversion of cellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen-using acetogen Appl. Environ. Microbiol. 61 3832–3835

    CAS  PubMed  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1996 Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora Appl. Environ. Microbiol. 62 1589–1592

    CAS  PubMed  Google Scholar 

  • Min, H., and S. H. Zinder. 1990 Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov Arch. Microbiol. 153 399–404

    Article  CAS  Google Scholar 

  • Misoph, M., and H. L. Drake. 1996a Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1 J. Bacteriol. 178 3140–3145

    CAS  PubMed  Google Scholar 

  • Misoph, M., S. L. Daniel, and H. L. Drake. 1996b Bidirectional usage of ferulate by the acetogen Peptostreptococcus productus U-1: CO2 and aromatic acrylate groups as competing electron acceptors Microbiology 142 1983–1988

    Article  CAS  Google Scholar 

  • Moench, T. T., and J. G. Zeikus. 1983 An improved preparation method for a titanium (III) media reductant J. Microbiol. Meth. 1 199–202

    Article  CAS  Google Scholar 

  • Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984 Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov Arch. Microbiol. 139 388–396

    Article  Google Scholar 

  • Moore, W., and E. Cato. 1965 Synonymy of Eubacterium limosum and Butyribacterium rettgeri Int. Bull. Bacteriol. Nomen. Taxon. 15 69–80

    Google Scholar 

  • Moore, W. E. C., and L. V. Holdeman. 1974 Human fecal flora: The normal flora of 20 Japanese-Hawaiians Appl. Microbiol. 27 961–979

    CAS  PubMed  Google Scholar 

  • Morton, T. A., C.-F. Chou, and L. G. Ljungdahl. 1992 Cloning, sequencing, and expressions of genes encoding enzymes of the autotrophic acetyl-CoA pathway in the acetogen Clostridium thermoaceticum In: M. Sebald (Ed.) Genetics and Molecular Biology of Anaerobic Bacteria Springer-Verlag New York, NY 389–406

    Google Scholar 

  • Müller, V., and G. Gottschalk. 1994 The sodium ion cycle in acetogenic and methanogenic bacteria: Generation and utilization of a primary electrochemical sodium ion gradient In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 127–156

    Chapter  Google Scholar 

  • Müller, V., and S. Bowien. 1995 Differential effects of sodium ions on motility in the homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides Arch. Microbiol. 164 363–369

    Article  Google Scholar 

  • Müller, V., S. Aufurth, and S. Rahlfs. 2001 The Na+-cycle in Acetobacterium woodii: Identification and characterization of a Na+-translocating F1F0-ATPase with a mixed oligomer of 8 and 16-kDa proteolipids Biochim. Biophys. Acta 1505 108–120

    Article  PubMed  Google Scholar 

  • Müller, V. 2003 Energy conservation in acetogenic bacteria Appl. Environ. Microbiol. 69 6345–6353

    Article  PubMed  CAS  Google Scholar 

  • Müller, V., F. Inkamp, A. Rauwolf, K. Küsel, and H. L. Drake. 2004 Molecular and cellular biology of acetogenic bacteria In: M. Nakano and P. Zuber (Eds) Strict and Facultative Anaerobes: Medical and Environmental Aspects Horizon Scientific Press United Kingdom 392

    Google Scholar 

  • Nagaranthal, K. R., and D. P. Nagle Jr. 1992 Inhibition of methanogenesis in Methanobacterium thermoautotrophicum by lumazine Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. I-23 240

    Google Scholar 

  • Naidu, D., and S. W. Ragsdale. 2001 Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica J. Bacteriol. 183 3276–3281

    Article  CAS  PubMed  Google Scholar 

  • Nozhevnikova, A. N., O. R. Kotsyurbenko, and M. V. Simankova. 1994 Acetogenesis at low temperature In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 416–431

    Chapter  Google Scholar 

  • Nozhevnikova, A. N., M. V. Simankova, S. N. Parshina, and O. R. Kotsyurbenko. 2001 Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments Water Sci. Technol. 44 41–48

    CAS  PubMed  Google Scholar 

  • O’Brien, W. E., and L. G. Ljungdahl. 1972 Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum J. Bacteriol. 109 626–632

    PubMed  Google Scholar 

  • O’Brien, W. E., J. M. Brewer, and L. G. Ljungdahl. 1973 Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum J. Biol. Chem. 248 403–408

    PubMed  Google Scholar 

  • Ohwaki, K., and R. E. Hungate. 1977 Hydrogen utilization by clostridia in sewage sludge Appl. Environ. Microbiol. 33 1270–1274

    CAS  PubMed  Google Scholar 

  • Ollivier, B., R. Cordruwisch, A. Lombardo, and J.-L. Garcia. 1985a Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium Arch. Microbiol. 142 307–310

    Article  CAS  Google Scholar 

  • Ollivier, B. M., R. A. Mah, T. J. Ferguson, D. R. Boone, J. L. Garcia, and R. Robinson. 1985b Emendation of the genus Thermobacteroides: Thermobacteriodes proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment Int. J. Sys. Bacteriol. 35 425–428

    Article  CAS  Google Scholar 

  • Ollivier, B., P. Caumette, J.-L. Garcia, and R. A. Mah. 1994 Anaerobic bacteria from hypersaline environments Microbiol. Rev. 58 27–38

    CAS  PubMed  Google Scholar 

  • Oren, A. 1988 Anaerobic degradation of organic compounds at high salt concentrations Ant. v. Leeuwenhoek 54 267–277

    Article  CAS  Google Scholar 

  • Oren, A. 1999 Bioenergetic aspects of halophilism Microbiol. Molec. Rev. 63 334–348

    CAS  Google Scholar 

  • Pacaud, S., P. Loubiere, and G. Goma. 1985 Methanol metabolism by Eubacterium limosum B2: Effects of pH and carbon dioxide on growth and organic acid production Curr. Microbiol. 12 245–250

    Article  CAS  Google Scholar 

  • Parekh, S. R., and M. Cheryan. 1991 Production of acetate by mutant strains of Clostridium thermoaceticum Appl. Microbiol. Biotechnol. 36 384–387

    Article  CAS  Google Scholar 

  • Parekh, M., E. S. Keith, S. L. Daniel, and H. L. Drake. 1992 Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: Utilization and transformation of aromatic compounds FEMS Microbiol. Lett. 94 69–74

    Article  CAS  Google Scholar 

  • Park, E. Y., J. E. Clark, D. V. DerVartanian, and L. G. Ljungdahl. 1991 5,10-Methylenetetrahydrofolate reductases: Iron-sulfur-zinc flavoproteins of two acetogenic clostridia In: F. Müller (Ed.) Chemistry and Biochemistry of Flavoenzymes CRC Press Boca Raton, FL 1 389–400

    Google Scholar 

  • Patel, B. K. C., C. Monk, H. Littleworth, H. W. Morgan, and R. M. Daniel. 1987 Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile Int. J. Sys. Bacteriol. 37 123–126

    Article  CAS  Google Scholar 

  • Peters, V., and R. Conrad. 1995 Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils Appl. Environ. Microbiol. 61 1673–1676

    CAS  PubMed  Google Scholar 

  • Peters, V., and R. Conrad. 1996 Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils Soil Biol. Biochem. 28 371–382

    Article  CAS  Google Scholar 

  • Peters, V., P. H. Janssen, and R. Conrad. 1998 Efficiency of hydrogen utilization during unitrophic and mixotrophic growth of Acetobacterium woodii on hydrogen and lactate in the chemostat FEMS Microbiol. Ecol. 26 317–324

    Article  CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1984a Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria Proc. Natl. Acad. Sci. USA 81 6261–6265

    Article  CAS  PubMed  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1984b The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate Arch. Microbiol. 137 63–69

    Article  CAS  PubMed  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1986 The autotrophic pathway of acetogenic bacteria: Role of CO dehydrogenase disulfide reductase J. Biol. Chem. 261 1609–1615

    CAS  PubMed  Google Scholar 

  • Pfennig, N. 1978 Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae Int. J. Syst. Bacteriol. 28 283–288

    Article  CAS  Google Scholar 

  • Phelps, T. J., and J. G. Zeikus. 1984 Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake Appl. Environ. Microbiol. 48 1088–1095

    CAS  PubMed  Google Scholar 

  • Phillips, J. R., E. C. Clausen, and J. L. Gaddy. 1994 Synthesis gas as substrate for the biological production of fuels and chemicals Appl. Biochem. Biotechnol. 45/46 145–157

    Article  Google Scholar 

  • Plugge, C. M., J. T. C. Grotenhuis, and A. J. M. Stams. 1990 Isolation and characterization of an ethanol-degrading anaerobe from methanogenic granular sludge In: J.-P. Belaich, M. Bruschiand, and J.-L. Garcia Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer Plenum Press New York, NY FEMS Symposium No. 54 439–442

    Chapter  Google Scholar 

  • Pochart, P., J. Dore, F. Lemann, I. Goderel, and J. C. Rambaud. 1992 Interrelations between populations of methanogenic archaea and sulphate-reducing bacteria in the human colon FEMS Microbiol. Lett. 98 225–228

    CAS  Google Scholar 

  • Poston, J. M., K. Kuratomi, and E. R. Stadtman. 1964 Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum Ann. NY Acad. Sci. 112 804–806

    Article  CAS  PubMed  Google Scholar 

  • Preuss, A., J. Fimpel, and G. Diekert. 1993 Anaerobic transformation of 2,4,6-trinitrotoluene (TNT) Arch. Microbiol. 159 345–353

    Article  CAS  PubMed  Google Scholar 

  • Prins, R. A., and A. Lankhorst. 1977 Synthesis of acetate from CO2 in the cecum of some rodents FEMS Microbiol. Lett. 1 255–258

    Article  CAS  Google Scholar 

  • Radfar, R., R. Shin, G. M. Sheldrick, W. Minor, C. R. Lovell, J. D. Odom, R. B. Dunlap, and L. Lebioda. 2000 The crystal structure of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica Biochemistry (Moscow) 39 3920–3926

    CAS  Google Scholar 

  • Ragsdale, S. W., J. E. Clark, L. G. Ljungdahl, L. L. Lundie, and H. L. Drake. 1983 Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfide protein J. Biol. Chem. 258 2364–2369

    CAS  PubMed  Google Scholar 

  • Ragsdale, S. W., and L. G. Ljungdahl. 1984 Hydrogenase from Acetobacterium woodii Arch. Microbiol. 139 361–365

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale, S. W., H. G. Wood, and W. E. Antholine. 1985 Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum Proc. Natl. Acad. Sci. USA 82 6811–6814

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale, S. W. 1991 Enzymology of the acetyl-CoA pathway of CO2 fixation Crit. Rev. Biochem. Molec. Biol. 26 261–300

    Article  CAS  Google Scholar 

  • Ragsdale, S. W. 1994 CO dehydrogenase and the central role of this enzyme in the fixation of carbon dioxide by anaerobic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 88–126

    Chapter  Google Scholar 

  • Ragsdale, S. W., and M. Kumar. 1996 Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase Chem. Rev. 96 2515–2539

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale, S. W. 1997 The Eastern and Western branches of the Wood/Ljungdahl pathway: How the East and West were won BioFactors 6 3–11

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale, S. W. 2000 Nickel containing CO dehydrogenases and hydrogenases In: A. Holzenburg and N. Scrutton Enzyme-catalyzed Electron and Radical Transfer Plenum Press New York, NY 35 487–518

    Google Scholar 

  • Ragsdale, S. W. 2003a Anaerobic one-carbon catalysis In: I. T. Horvath, E. Iglesia, M. T. Klein, J. A. Lercher, A. J. Russell, and E. I. Stiefel Encyclopedia of Catalysis John Wiley New York, NY 665–695

    Google Scholar 

  • Ragsdale, S. W. 2003b Pyruvate ferredoxin oxidoreductase and its radical intermediate Chem. Rev. 103 2333–2346

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale, S. W. 2004 Life with carbon monoxide CRC Crit. Rev. Biochem. Molec. Biol. 39(3) 165–95

    Article  CAS  Google Scholar 

  • Rainey, F. A., N. L. Ward, H. W. Morgan, R. Toalster, and E. Stackebrandt. 1993 Phylogenetic analysis of anaerobic thermophilic bacteria: Aid for their reclassification J. Bacteriol. 175 4772–4779

    CAS  PubMed  Google Scholar 

  • Rasch, M., W. O. Saxton, and W. Baumeister. 1984 The regular surface layer of Acetogenium kivui: Some structural, developmental and evolutionary aspects FEMS Microbiol. Lett. 24 285–290

    Article  Google Scholar 

  • Ravinder, T., M. V. Swamy, G. Seenaya, and G. Reddy. 2001 Clostridium lentocellum SG6—a potential organism for fermentation of cellulose to acetic acid Biores. Technol. 80 171–177

    Article  CAS  Google Scholar 

  • Reidlinger, J., and V. Müller. 1994a Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1F0-type enzyme Eur. J. Biochem. 223 275–283

    Article  CAS  PubMed  Google Scholar 

  • Reidlinger, J., F. Mayer, and V. Müller. 1994b The molecular structure of the Na+-translocating F1F0-ATPase of Acetobacterium woodii, as revealed by electron microscopy, resembles that of H+-translocating ATPases FEBS Lett. 356 17–20

    Article  CAS  PubMed  Google Scholar 

  • Reith, F., H. L. Drake, and K. Küsel. 2002 Anaerobic activities of bacteria and fungi in moderately acidic conifer and leaf litter FEMS Microbiol. Ecol. 41 27–35

    Article  CAS  PubMed  Google Scholar 

  • Revsbech, N. P., O. Pedersen, W. Reichardt, and A. Briones. 1999 Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions Biol. Fertil. Soils 29 379–385

    Article  Google Scholar 

  • Rieu-Lesme, F., G. Fonty, and J. Doré. 1995 Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen FEMS Microbiol. Lett. 125 77–82

    Article  CAS  PubMed  Google Scholar 

  • Rieu-Lesme, F., C. Dauga, B. Morvan, O. M. M. Bouvet, P. A. D. Grimont, and J. Doré. 1996a Acetogenic coccoid spore-forming bacteria isolated from the rumen Res. Microbiol. 147 753–764

    Article  CAS  PubMed  Google Scholar 

  • Rieu-Lesme, F., B. Morvan, M. D. Collins, G. Fontyand, and A. Willems. 1996b A new H2/CO2-using acetogenic bacterium from the rumen: Description of Ruminococcus schinkii sp. nov FEMS Microbiol. Lett. 140 281–286

    CAS  PubMed  Google Scholar 

  • Rieu-Lesme, F., C. Dauga, G. Fonty, and J. Doré. 1998 Isolation from the rumen of a new acetogenic bacterium phylogenetically closely related to Clostridium difficile Anaerobe 4 89–94

    Article  CAS  PubMed  Google Scholar 

  • Rosencrantz, D., F. A. Rainey, and P. H. Janssen. 1999 Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms Appl. Environ. Microbiol. 65 3526–3533

    CAS  PubMed  Google Scholar 

  • Rotthauwe, J. H., K. P. Witzel, and W. Liesack. 1997 The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidising populations Appl. Environ. Microbiol. 63 4704–4712

    CAS  PubMed  Google Scholar 

  • Royall, D., T. M. S. Wolever, and K. N. Jeejeebhoy. 1990 Clinical significance of colonic fermentation Am. J. Gastroenetrol. 85 1307–1312

    CAS  Google Scholar 

  • Salmassi, T. M., and J. R. Leadbetter. 2003 Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis Microbiology 149 2529–2537

    Article  CAS  PubMed  Google Scholar 

  • Samain, E., G. Albangnac, H. C. Dubourguier, and J.-P. Touzel. 1982 Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor-dependent association with a gram-negative homoacetogen FEMS Microbiol. Lett. 15 69–74

    Article  CAS  Google Scholar 

  • Sanford, R. A., J. R. Cole, F. E. Löffler, and J. M. Tiedje. 1996 Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate Appl. Environ. Microbiol. 62 3800–3808

    CAS  PubMed  Google Scholar 

  • Sansone, F. J., and C. S. Martens. 1982 Volatile fatty acid cycling in organic-rich marine sediments Geochim. Cosmochim. Acta 46 1575–1589

    Article  CAS  Google Scholar 

  • Savage, M. D., and H. L. Drake. 1986 Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium J. Bacteriol. 165 315–318

    CAS  PubMed  Google Scholar 

  • Savage, M. D., Z. Wu, S. L. Daniel, L. L. Lundie Jr., and H. L. Drake. 1987 Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum Appl. Environ. Microbiol. 53 1902–1906

    CAS  PubMed  Google Scholar 

  • Schauder, R., B. Eikmanns, R. K. Thauer, F. Widdel, and G. Fuchs. 1986 Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the critic acid cycle Arch. Microbiol. 145 162–172

    Article  CAS  Google Scholar 

  • Schaupp, A., and L. G. Ljungdahl. 1974 Purification and properties of acetate kinase from Clostridium thermoaceticum Arch. Microbiol. 100 121–129

    Article  CAS  PubMed  Google Scholar 

  • Schink, B. 1984 Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium Arch. Microbiol. 137 250–255

    Article  CAS  Google Scholar 

  • Schink, B., and M. Bomar. 1992 The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer New York, NY 1925–1936

    Google Scholar 

  • Schink, B. 1994 Diversity, ecology, and isolation of acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 197–235

    Chapter  Google Scholar 

  • Schmitt-Wagner, D., and A. Brune. 1999 Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl. Environ. Microbiol. 65 4490–4496

    CAS  PubMed  Google Scholar 

  • Schnürer, A., F. P. Houwen, and B. H. Svensson. 1994 Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration Arch. Microbiol. 162 70–74

    Article  Google Scholar 

  • Schnürer, A., B. Schink, and B. H. Svensson. 1996 Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium Int. J. Syst. Bacteriol. 46 1145–1152

    Article  PubMed  Google Scholar 

  • Schnürer, A., B. H. Svensson, and B. Schink. 1997 Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense FEMS Microbiol. Lett. 154 331–336

    Article  Google Scholar 

  • Schopf, J. W., J. M. Hayes, and M. R. Walter. 1983 Evolution of the earth’s earliest ecosystems: Recent progress and unsolved problems In: J. W. Schopf (Ed.) Earth’s Earliest Biosphere Princeton University Press Princeton, NJ 361–384

    Google Scholar 

  • Schramm, E., and B. Schink. 1991 Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp Biodegradation 2 71–79

    Article  CAS  PubMed  Google Scholar 

  • Schulman, M., R. K. Ghambeer, L. G. Ljungdahl, and H. G. Wood. 1973 Total synthesis of acetate from CO2. VII: Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2 J. Biol. Chem. 248 6255–6261

    CAS  PubMed  Google Scholar 

  • Schulz, M., H. Leichmann, H. Günther, and H. Simon. 1995 Electromicrobial regeneration of pyridine nucleotides and other preparative redox transformations with Clostridium thermoaceticum Appl. Microbiol. Biotechnol. 42 916–922

    Article  CAS  Google Scholar 

  • Schulz, S., and R. Conrad. 1996 Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance FEMS Microbiol. Ecol. 20 1–14

    Article  CAS  Google Scholar 

  • Schuppert, B., and B. Schink. 1990 Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp Arch. Microbiol. 153 200–204

    Article  CAS  Google Scholar 

  • Schwartz, R. D., and F. A. Keller Jr. 1982 Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5 Appl. Environ. Microbiol. 43 117–123

    CAS  PubMed  Google Scholar 

  • Seifritz, C., S. L. Daniel, A. Gößner, and H. L. Drake. 1993 Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum J. Bacteriol. 175 8008–8013

    CAS  PubMed  Google Scholar 

  • Seifritz, C., J. M. Fröstl, H. L. Drake, and S. L. Daniel. 1999 Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica FEMS Microbiol. Lett. 170 399–405

    Article  CAS  Google Scholar 

  • Seifritz, C., J. M. Fröstl, H. L. Drake, and S. L. Daniel. 2002 Influence of nitrate on oxalate-and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica Arch. Microbiol. 178 457–464

    Article  CAS  PubMed  Google Scholar 

  • Seifritz, C., H. L. Drake, and S. L. Daniel. 2003 Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica Curr. Microbiol. 46 329–333

    Article  CAS  PubMed  Google Scholar 

  • Sembiring, T., and J. Winter. 1989 Anaerobic degradation of O-phenylphenol by mixed and pure cultures Appl. Microbiol. Biotechnology 31 89–92

    CAS  Google Scholar 

  • Sembiring, T., and J. Winter. 1990 Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains Appl. Microbiol. Biotechnol. 33 233–238

    Article  CAS  Google Scholar 

  • Sexstone, A. J., N. P. Revsbech, T. B. Parkin, and J. M. Tiedje. 1985 Direct measurement of oxygen profiles and denitrification rates in soil aggregates Soil Sci. Soc. Am. J. 49 645–651

    Article  CAS  Google Scholar 

  • Sharak Genthner, B. R., C. L. Davies, and M. P. Bryant. 1981 Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H CO2-CO CO2-utilizing species Appl. Environ. Microbiol. 42 12–19

    CAS  PubMed  Google Scholar 

  • Sharak Genthner, B. R., and M. P. Bryant. 1982 Growth of Eubacterium limosum with carbon monoxide as the energy source Appl. Environ. Microbiol. 43 70–74

    CAS  PubMed  Google Scholar 

  • Sharak Genthner, B. R., and M. P. Bryant. 1987 Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii Appl. Environ. Microbiol. 53 471–476

    Google Scholar 

  • Shin, W. S., J. S. Kim, S. P. Lee, Y. S. Kim, J. W. Shin, and S. H. Lee. 2001 Electrochemical conversion of CO CO2 to CO or acetate by enzymes of Clostridium thermoaceticum Abstr. Am. Chem. Soc. 221 U504

    Google Scholar 

  • Silaghi-Dumitrescu, R., E. D. Coulter, A. Das, L. G. Ljungdahl, G. N. L. Jameson, B. H. Huynh, and D. M. Kurtz Jr. 2003 A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity Biochemistry 42 2806–2815

    Article  CAS  PubMed  Google Scholar 

  • Simankova, M. V., O. R. Kotsyurbenko, E. Stackebrandt, N. A. Kostrikina, A. M. Lysenko, G. A. Osipov, and A. N. Nozhevnikova. 2000 Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil Arch. Microbiol. 174 440–447

    Article  CAS  PubMed  Google Scholar 

  • Singleton Jr., R. 1997a Harland Goff Wood: An American biochemist In: G. Semenza and R. Jaenicke Comprehensive Biochemistry: History of Biochemistry Elsevier Science Amsterdam, The Netherlands 40 333–382

    Google Scholar 

  • Singleton Jr., R. 1997b Heterotrophic CO2-fixation, mentors, and students: The Wood-Werkman reactions J. Hist. Biol. 30 91–120

    Article  CAS  PubMed  Google Scholar 

  • Singleton Jr., R. 2000 From bacteriology to biochemistry: Albert Jan Kluyver and Chester Werkman at Iowa State J. Hist. Biol. 33 141–180

    Article  CAS  PubMed  Google Scholar 

  • Sleat, R., R. A. Mah, and R. Robinson. 1985 Acetoanaerobium noterae gen. nov., sp. nov.: An anaerobic bacterium that forms acetate from H2 and CO2 Int. J. Sys. Bacteriol. 35 10–15

    Article  Google Scholar 

  • Slobodkin, A.-L. Reysenbach, F. Mayer, and J. Wiegel. 1997 Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov Int. J. Syst. Bacteriol. 47 969–974

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. R., and R. A. Mah. 1981 2-Bromoethanesulfonate: A selective agent for isolating resistant Methanosarcina mutants Curr. Microbiol. 6 321–326

    Article  CAS  Google Scholar 

  • Smith, K. A., and J. R. M. Arah. 1986 Anaerobic micro-environments in soil and the occurrence of anaerobic bacteria In: V. Jensen, A. Kjöller, and L. H. Sørensen Microbial Communities in Soil Elsevier Applied Science Publishers London, UK FEMS Symposium, No. 33 247–261

    Google Scholar 

  • Spruth, M., J. Reidlinger, and V. Müller. 1995 Sodium ion dependence of inhibition of the Na+-translocating F1F0-ATPase from Acetobacterium woodii: Probing the site(s) involved in ion transport Biochim. Biophys. Acta 1229 96–102

    Article  Google Scholar 

  • Stackebrandt, E., I. Kramer, J. Swiderski, and H. Hippe. 1999 Phylogenetic basis for a taxonomic dissection of the genus Clostridium FEMS Immun. Med. Microbiol. 24 253–258

    Article  CAS  Google Scholar 

  • Stams, A. J. M., and X. Dong. 1995 Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria Ant. v. Leeuwenhoek 68 281–284

    Article  CAS  Google Scholar 

  • Stevens, T., and J. P. McKinley. 1995 Lithoautotrophic microbial ecosystems in deep basalt aquifers Science 270 450–454

    Article  CAS  Google Scholar 

  • Stromeyer, S. A., K. Stumpf, A. M. Cook, and T. Leisinger. 1992 Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: Separation of dechlorinative activities in cell extracts and roles of vitamin B12 and other factors Biodegradation 3 113–123

    Article  CAS  Google Scholar 

  • Sugaya, K., D. Tusé, and J. L. Jones. 1986 Production of acetic acid by Clostridium thermoaceticum in batch and continuous fermentations Biotechnol. Bioengin. 28 678–683

    Article  CAS  Google Scholar 

  • Talabardon, M., J.-P. Schwitzguébel, P. Péringer, and S.-T. Yang. 2000 Acetic acid production from lactose by an anaerobic thermoophilic coculture immobilized in a fibrous-bed bioreactor Biotechnol. Progr. 16 1008–1017

    Article  CAS  Google Scholar 

  • Tanaka, K., and N. Pfennig. 1988 Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus Arch. Microbiol. 149 181–187

    Article  CAS  Google Scholar 

  • Tani, M., T. Higashi, and S. Nagatsuka. 1993 Dynamics of low-molecular weight aliphatic carboxylic acids (LACAs) in forest soils. I: Amount and composition of LACAs in different types of forest soils Soil Sci. Plant Nutr. 39 485–495

    Article  CAS  Google Scholar 

  • Tanner, R. S., E. Stackebrandt, G. E. Fox, and C. R. Woese. 1981 A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue Curr. Microbiol. 5 35–38

    Article  Google Scholar 

  • Tanner, R. S., L. M. Miller, and D. Yang. 1993 Clostridium ljungdahlii sp. nov., and acetogenic species in clostridial rRNA homology group I Int. J. Sys. Bacteriol. 43 232–236

    Article  CAS  Google Scholar 

  • Tanner, R. S., and C. R. Woese. 1994 A phylogenetic assessment of the acetogens In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 254–269

    Chapter  Google Scholar 

  • Tasaki, M., Y. Kamagata, K. Nakamura, and E. Mikami. 1992 Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate Arch. Microbiol. 157 209–212

    Article  CAS  PubMed  Google Scholar 

  • Tasaki, M., Y. Kamagata, K. Nakamura, K. Okamura, and E. Mikami. 1993 Acetogenesis from pyruvate by Desulfotomaculum thermobenzoicum and differences in pyruvate metabolism among three sulfate-reducing bacteria in the absence of sulfate FEMS Microbiol. Lett. 106 259–264

    Article  CAS  Google Scholar 

  • Terracciano, J. S., W. J. A. Schreurs, and E. R. Kashket. 1987 Membrane H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum Appl. Environ. Microbiol. 53 782–786

    CAS  PubMed  Google Scholar 

  • Terzenbach, D. P., and M. Blaut. 1994 Transformation of tetrachloroethylene by homoacetogenic bacteria FEMS Microbiol. Lett. 123 213–218

    Article  CAS  PubMed  Google Scholar 

  • Teske, A., N. B. Ramsing, K. Habicht, M. Fukui, J. Küver, B. B. Jørgensen, and Y. Cohen. 1998 Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt) Appl. Environ. Microbiol. 64 2943–2951

    CAS  PubMed  Google Scholar 

  • Thauer, R. K., G. Fuchs, B. Käufer, and U. Schnitker. 1974 Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum Eur. J. Biochem. 45 343–349

    Article  CAS  PubMed  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180

    CAS  PubMed  Google Scholar 

  • Thauer, R. K. 1988 Citric acid cycle, 50 years on: Modification and an alternative pathway in anaerobic bacteria Eur. J. Biochem. 176 497–508

    Article  CAS  PubMed  Google Scholar 

  • Thauer, R. K., D. Möller-Zinkhan, and A. M. Spormann. 1989 Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria Ann. Rev. Microbiol. 43 43–67

    Article  CAS  Google Scholar 

  • Tholen, A., B. Schink, and A. Brune. 1997 The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp FEMS Microbiol. Ecol. 24 137–149

    Article  CAS  Google Scholar 

  • Tholen, A., and A. Brune. 1999 Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl. Environ. Microbiol. 65 4497–4505

    CAS  PubMed  Google Scholar 

  • Tholen, A., and A. Brune. 2000 Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes Environ. Microbiol. 2 436–449

    Article  CAS  PubMed  Google Scholar 

  • Tiedje, J. M., A. J. Sexstone, T. B. Parkin, N. P. Revsbech, and D. R. Shelton. 1984 Anaerobic processes in soil Plant Soil 76 197–212

    Article  CAS  Google Scholar 

  • Traunecker, J., A. Preuß, and G. Diekert. 1991 Isolation and characterization of a methyl cloride utilizing, strictly anaerobic bacterium Arch. Microbiol. 156 416–421

    Article  CAS  Google Scholar 

  • Tschech, A., and N. Pfennig. 1984 Growth yield increase linked to caffeate reduction in Acetobacterium woodii Arch. Microbiol. 137 163–167

    Article  CAS  Google Scholar 

  • Tyler, S. C. 1991 The global methane budget In: J. E. Rogers and W. B. Whitman Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes American Society for Microbiology Washington, DC 7–38

    Google Scholar 

  • Vandenberg, J. I., N. D. Carter, H. W. L. Bethell, A. Nogradi, Y. Ridderstrale, J. C. Metcalfe, and A. A. Grace. 1996 Carbonic anhydrase and cardiac pH regulation Am. J. Physiol. 40 1838–1846

    Google Scholar 

  • Van der Lee, G. E. M., B. de Winder, W. Bouten, and A. Tietema. 1999 Anoxic microsites in douglas fir litter Soil Biol. Biochem. 31 1295–1301

    Article  Google Scholar 

  • Varel, V. H., M. P. Bryant, L. V. Holdeman, and W. E. C. Moore. 1974 Isolation of ureolytic Peptostreptococcus productus from feces using defined medium; failure of common urease tests Appl. Microbiol. 28 594–599

    CAS  PubMed  Google Scholar 

  • Varma, A. K., and H. D. Peck Jr. 1983 Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria FEMS Microbiol. Lett. 16 281–285

    Article  CAS  Google Scholar 

  • Varma, A., B. K. Kolli, J. Paul, S. Saxena, and H. König. 1994 Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art FEMS Microbiol. Rev. 15 9–28

    Article  CAS  Google Scholar 

  • Von Eysmondt, J., D. Vasic-Racki, and C. Wandrey. 1990 Acetic acid production by Acetogenium kivui in continuous culture—kinetic studies and computer simulations Appl. Microbiol. Biotechnol. 34 344–349

    Article  Google Scholar 

  • Wagener, S., and B. Schink. 1988 Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria Appl. Environ. Microbiol. 54 561–565

    CAS  PubMed  Google Scholar 

  • Wagner, C., A. Grießhammer, and H. L. Drake. 1996 Acetogenic capacities and the anaerobic turnover of carbon in a Kansas prairie soil Appl. Environ. Microbiol. 62 494–500

    CAS  PubMed  Google Scholar 

  • Waisel, Y., and M. Agami. 1996 Ecophysiology of roots of submerged aquatic plants In: Y. Waisel, A. Eshel, and U. Kafkafi Plant Roots: The Hidden Half, 2nd ed Marcel Dekker New York, NY 895–909

    Google Scholar 

  • Wang, G., and D. I. C. Wang. 1983 Production of acetic acid by immobilized whole cells of Clostridium thermoaceticum Appl. Biochem. Biotechnol. 8 491–503

    Article  CAS  PubMed  Google Scholar 

  • Wang, G., and D. I. C. Wang. 1984 Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum Appl. Environ. Microbiol. 47 294–298

    CAS  PubMed  Google Scholar 

  • Weinberg, M., and B. Ginsbourg. 1927 Données récéntes sur les microbes anaérobies et leur role en pathologie Masson Paris, France 1–291

    Google Scholar 

  • Wellsbury, P., K. Goodman, T. Barth, B. A. Cragg, S. P. Barnes, and R. J. Parkes. 1997 Deep marine biosphere fuelled by increasing organic matter availability during burial and heating Nature 388 573–576

    Article  CAS  Google Scholar 

  • Wellsbury, P., K. Goodman, B. A. Cragg, and J. Parkes. 2000 The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (sites 994, 995, and 997) Proceedings of the Ocean Drilling Program, Scientific Results 164 379–391

    Google Scholar 

  • Wellsbury, P., I. Mather, and R. J. Parkes. 2002 Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean FEMS Microbiol. Ecol. 42 59–70

    Article  CAS  PubMed  Google Scholar 

  • Whitman, W. B. 1994 Autotrophic Acetyl Coenzyme A Biosynthesis in Methanogens Acetogenesis Chapman and Hall New York, NY 521–538

    Chapter  Google Scholar 

  • Whitman, W. B., D. C. Coleman, and W. J. Wiebe. 1998 Prokaryotes: The unseen majority Proc. Natl. Acad. Sci. USA 95 6578–6583

    Article  CAS  PubMed  Google Scholar 

  • Widdel, F. 1988 Microbiology and ecology of sulfate and sulfur-reducing bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms Wiley New York, NY 469–587

    Google Scholar 

  • Wiegel, J., M. Braun, and G. Gottschalk. 1981 Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide Curr. Microbiol. 5 255–260

    Article  CAS  Google Scholar 

  • Wiegel, J., L. H. Carreira, R. J. Garrison, N. E. Robek, and L. G. Ljungdahl. 1990 Calcium magnesium acetate (CMA) manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria In: D. L. Wise, Y. Levendis, and M. Metghalchi Calcium Magnesium Acetate Elsevier Amsterdam, The Netherlands 359–416

    Google Scholar 

  • Wiegel, J. 1994 Acetate and the potential of homoacetogenic bacteria for industrial applications In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 484–504

    Chapter  Google Scholar 

  • Wieringa, K. T. 1936 Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden Ant. v. Leeuwenhoek 3 263–273

    Article  Google Scholar 

  • Wieringa, K. T. 1939–1940 The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria Ant. v. Leeuwenhoek 6 251–262

    Article  Google Scholar 

  • Wieringa, K. T. 1941 Über die Bildung von Essigsäure aus Kohlensäure und Wasserstoff durch anaerobe Bazillen Brennstoff-Chemie 22 161–164

    CAS  Google Scholar 

  • Winter, J. U., and R. S. Wolfe. 1980 Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens Arch. Microbiol. 124 73–39

    Article  CAS  PubMed  Google Scholar 

  • Wofford, N. Q., P. S. Beaty, and M. J. McInerney. 1986 Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei J. Bacteriol. 167 179–185

    CAS  PubMed  Google Scholar 

  • Wohlfarth, G., and G. Diekert. 1991 Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria Arch. Microbiol. 155 378–381

    Article  CAS  Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1983 Carbohydrate fermentation In: D. A. Hentges (Ed.) Human Intestinal Flora in Health and Disease Academic Press New York, NY 147–165

    Chapter  Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1993 Bacterial strains from human feces that reduce CO2 to acetic acid Appl. Environ. Microbiol. 59 3551–3556

    CAS  PubMed  Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1994 Acetogenesis from CO2 in the human colonic ecosystem In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 365–385

    Chapter  Google Scholar 

  • Wolin, M. J., T. L. Miller, S. Yerry, Y. Zhang, S. Bank, and G. A. Weaver. 1999 Changes of fermentation pathways of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon Appl. Environ. Microbiol. 65 2807–2812

    CAS  PubMed  Google Scholar 

  • Wolin, M. J., T. L. Miller, M. D. Collins, and P. A. Lawson. 2003 Formate-dependent growth and homoacetogenic fermentation by a bacterium from human feces: Description of Bryantella formatexigens gen. nov., sp. nov Appl. Environ. Microbiol. 69 6321–6326

    Article  CAS  PubMed  Google Scholar 

  • Wood, H. G., and C. H. Werkman. 1936 Mechanism of glucose dissimilation by the propionic acid bacteria Biochem. J. 30 618–623

    CAS  PubMed  Google Scholar 

  • Wood, H. G., and C. H. Werkman. 1938 The utilization of CO2 by the propionic acid bacteria Biochem. J. 32 1262–1271

    CAS  PubMed  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway, and A. O. Nier. 1941a Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation J. Biol. Chem. 139 365–376

    CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway, and A. O. Nier. 1941b The position of carbon dioxide carbon in succinic acid synthesized by heterotrophic bacteria J. Biol. Chem. 139 377–381

    CAS  Google Scholar 

  • Wood, H. G. 1952a A study of carbon dioxide fixation by mass determination on the types of C13-acetate J. Biol. Chem. 194 905–931

    CAS  PubMed  Google Scholar 

  • Wood, H. G. 1952b Fermentation of 3,4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum J. Biol. Chem. 199 579–583

    CAS  PubMed  Google Scholar 

  • Wood, H. G. 1972 My life and carbon dioxide fixation In: J. F. Woessner Jr. and F. Huijing The Molecular Basis of Biological Transport Academic Press New York, NY Miami Winter Symposium Vol. 3 1–54

    Google Scholar 

  • Wood, H. G. 1976 Trailing the propionic acid bacteria In: A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro Reflections on Biochemistry Pergamon Press Oxford, UK 105–115

    Google Scholar 

  • Wood, H. G. 1982 The discovery of the fixation of CO2 by heterotrophic organisms and metabolism of the propionic bacteria In: G. Semenza (Ed.) Of Oxygen, Fuels, and Living Matter, Part 2 John Wiley New York, NY 173–250

    Google Scholar 

  • Wood, H. G. 1985 Then and now Ann. Rev. Biochem. 54 1–41

    Article  CAS  PubMed  Google Scholar 

  • Wood, H. G. 1989 Past and present of CO2 utilization In: H. G. Schlegel and B. Bowien Autotrophic Bacteria Science Tech Madison, WI 33–52

    Google Scholar 

  • Wood, H. G. 1991a Life with CO or CO2 and H2 as a source of carbon and energy FASEB J. 5 156–163

    CAS  PubMed  Google Scholar 

  • Wood, H. G., and L. G. Ljungdahl. 1991b Autotrophic character of the acetogenic bacteria In: J. M. Shively and L. L. Barton Variations in Autotrophic Life Academic Press San Diego, CA 201–250

    Google Scholar 

  • Worden, R. M., A. J. Grethlein, J. G. Zeikus, and R. Datta. 1989 Butyrate production from carbon monoxide by Butyribacterium methylotrophicum Appl. Biochem. Biotechnol. 20/21 687–698

    Article  Google Scholar 

  • Wu, Z., S. L. Daniel, and H. L. Drake. 1988 Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum J. Bacteriol. 170 5747–5750

    CAS  PubMed  Google Scholar 

  • Yamamoto, I., T. Saiki, S.-M. Liu, and L. G. Ljungdahl. 1983 Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein J. Biol. Chem. 258 1826–1832

    CAS  PubMed  Google Scholar 

  • Yang, H., and H. L. Drake. 1990 Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui Appl. Environ. Microbiol. 56 81–86

    CAS  PubMed  Google Scholar 

  • Zavarzin, G. A., T. N. Zhilina, and M. A. Pusheva. 1994 Halophilic acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 432–444

    Chapter  Google Scholar 

  • Zehnder, A. J. B., and K. Wuhrmann. 1976 Titanium III citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes Science 194 1165–1166

    Article  CAS  PubMed  Google Scholar 

  • Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980 Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium Arch. Microbiol. 124 1–11

    Article  CAS  PubMed  Google Scholar 

  • Zeikus, J. G., L. H. Lynd, T. E. Thompson, J. A. Krzycki, P. J. Weimer, and P. W. Hegge. 1980 Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain Curr. Microbiol. 3 381–386

    Article  CAS  Google Scholar 

  • Zeikus, J. G. 1983 Metabolism of one-carbon compounds by chemotrophic anaerobes Adv. Microb. Physiol. 24 215–299

    Article  CAS  PubMed  Google Scholar 

  • Zeikus, J. G., R. Kerby, and J. A. Krzycki. 1985 Single-carbon chemistry of acetogenic and methanogenic bacteria Science 227 1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1990 Extremely halophilic, methylotrophic, anaerobic bacteria FEMS Microbol. Rev. 87 315–322

    Article  CAS  Google Scholar 

  • Zhilina, T. N., G. A. Zavarzin, E. N. Detkova, and F. A. Rainey. 1996 Natroniella acetigena gen. nov. sp. nov., an extremely halophilic, homoacetogenic bacterium: A new member of Haloanaerobiales Curr. Microbiol. 32 320–326

    Article  CAS  PubMed  Google Scholar 

  • Zhilina, T. N., E. N. Detkova, F. A. Rainey, G. A. Osipov, A. M. Lysenko, N. A. Kostrikina, and G. A. Zavarzin. 1998 Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe Curr. Microbiol. 37 177–185

    Article  CAS  PubMed  Google Scholar 

  • Zinder, S. H., and M. Koch. 1984 Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture Arch. Microbiol. 138 263–272

    Article  CAS  Google Scholar 

  • Zinder, S. H. 1994 Syntrophic Acetate Oxidation and “Reversible Acetogenesis” In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 386–415

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Drake, H.L., Küsel, K., Matthies, C. (2006). Acetogenic Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_13

Download citation

Publish with us

Policies and ethics