Skip to main content

Selective Sweeps in Structured Populations—Empirical Evidence and Theoretical Studies

  • Chapter
Selective Sweep

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hudson R, Kaplan N. Deleterious background selection with recombination. Genetics 1995; 141:1605–1617.

    PubMed  CAS  Google Scholar 

  2. Charlesworth B, Nordborg M, Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res 1997; 70:155–174.

    Article  PubMed  CAS  Google Scholar 

  3. Slatkin M, Wiehe T. Genetic hitch-hiking in a subdivided population. Genet Res 1998; 71(2):155–160.

    Article  PubMed  CAS  Google Scholar 

  4. Stephan W, Mitchell SJ. Reduced levels of DNA polymorphism and fixed between-population differences in the centromeric region of Drosophila ananassae. Genetics Dec 1992; 132(4): 1039–1045.

    PubMed  CAS  Google Scholar 

  5. Begun D, Aquadro C. African and north American populations of Drosophila melanogaster are very different at the DNA level. Nature 1993; 365:548–550.

    Article  PubMed  CAS  Google Scholar 

  6. Lindsley DL, Sandier L. The genetic analysis of meiosis in female Drosophila melanogaster Philos Trans R Soc London B Biol Sci 1977; 277:295–312.

    Article  PubMed  CAS  Google Scholar 

  7. Tobari YN. Drosophila ananassae-Genetical and Biological Aspects. Tokyo: Japan Scientific Societies Press, 1993.

    Google Scholar 

  8. Dobzhansky T, Dreyfus A. Chromosomal aberrations in Brazilian Drosophila ananassae. Proc Natl Acad Sci USA 1943; 29:301–305.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson FM. Isozyme polymorphisms in Drosophila ananassae: Genetic diversity among island populations in the South Pacific. Genetics 1971; 68:77–95.

    PubMed  CAS  Google Scholar 

  10. Stephan W, Langley CH. Molecular genetic variation in the centromeric region of the X chromo some in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics Jan 1989; 121(1):89–99.

    PubMed  CAS  Google Scholar 

  11. Stephan W. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations II. The Om(1D) locus. Mol Biol Evol Nov 1989; 6(6):624–635.

    PubMed  CAS  Google Scholar 

  12. Lynch M, Crease TJ. The analysis of population survey data on DNA sequence variation. Mol Biol Evol Jul 1990; 7(4):377–394.

    PubMed  CAS  Google Scholar 

  13. Tomimura Y, Matsuda M, Tobari YN. Polytene chromosome variations of Drosophila ananassae and its relatives. In: Tobari YN, ed. Drosophila ananassae-Genetical and Biological Aspects. Tokyo: Japan Scientific Societies Press, 1993:139–151.

    Google Scholar 

  14. Singh BN. Population genetics of inversion polymorphism in Drosophila ananassae. Indian J of Exp Biol 1998; 36:739–748.

    CAS  Google Scholar 

  15. Tobari YN, Goñi B, Tomimura Y et al. Chromosome. In: Tobari YN, ed. Drosophila ananassae-Genetical and Biological Aspects. Tokyo: Japan Scientific Societies Press, 1993:23–48.

    Google Scholar 

  16. Stephan W, Xing L, Kirby DA et al. A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc Natl Acad Sci USA May 12 1998; 95(10):5649–5654.

    Article  PubMed  CAS  Google Scholar 

  17. Wright S. Isolation by distance. Genetics 1943; 28:114–138.

    PubMed  CAS  Google Scholar 

  18. Chen Y, Marsh BJ, Stephan W. Joint effects of natural selection and recombination on gene flow between Drosophila ananassae populations. Genetics 2000; 155:1185–1194.

    PubMed  CAS  Google Scholar 

  19. Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics 1987; 116:153–159.

    PubMed  CAS  Google Scholar 

  20. Charlesworth B, Morgan M, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics 1993; 134:1289–1303.

    PubMed  CAS  Google Scholar 

  21. Aquadro C, Begun D, Kindahl E. Selection, recombination, and DNA polymorphism in Drosophila. In: Golding B, ed. NonNeutral Evolution. London: Chapman and Hall, 1994:46–55.

    Google Scholar 

  22. Keightley PD, EyreWalker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics 1999; 153:515–523.

    PubMed  CAS  Google Scholar 

  23. Cohet Y, Vouidibio J, David JR. Thermal tolerance and geographic distribution: A comparison of cosmopolitan and tropical endemic Drosophila species. J Therm Biol 1980; 5:69–74.

    Article  Google Scholar 

  24. Morin JP, Moreteau B, Pétavy G et al. Reaction norms of morphometrical traits in Drosophila: Adapative shape changes in a stenotherm circumtropical species. Evolution 1997; 51:1140–1148.

    Article  Google Scholar 

  25. Das A, Mohanty S, Parida BB et al. Variation in tolerance to starvation in Indian natural populations of Drosophila ananassae. Biol Zentralblatt 1994; 113:469–474.

    Google Scholar 

  26. Karan D, Dahiya N, Munial AK et al. Desiccation and starvation tolerance of adult Drosophila: Opposite latitudinal clines in natural populations of three different species. Evolution 1998; 52:825–831.

    Article  Google Scholar 

  27. Tishkoff SA, Varkonyi R, Cahinhinan N et al. Haplotype diversity and linkage disequilibrium at human G6PD: Recent origin of alleles that confer malarial resistance. Science Jul 20 2001; 293(5529):455–462.

    Article  PubMed  CAS  Google Scholar 

  28. Hamblin M, Di Rienzo A. Detection of the signature of natural selection in humans: Evidence from the Duffy blood group locus. Am J Hum Genet 2000; 66:1669–1679.

    Article  PubMed  CAS  Google Scholar 

  29. Hamblin MT, Thompson EE, Di Rienzo A. Complex signatures of natural selection at the Duffy blood group locus. Am J Hum Genet 2002; 70:369–383.

    Article  PubMed  Google Scholar 

  30. Rana BK, Hewett-Emmett D, Jin L et al. High polymorphism at the human melanocortin 1 receptor locus. Genetics Apr 1999; 151(4): 1547–1557.

    PubMed  CAS  Google Scholar 

  31. Hollox E, Poulter M, Zvarik M et al. Lactase haplotype diversity in the old world. Am J Hum Genet 2001; 68:160–172.

    Article  PubMed  CAS  Google Scholar 

  32. Mitchell-Olds. Arabidopsis thaliana and its wild relatives: A model system for ecology and evolution. Trends Ecol Evol 2001; 16:693–697.

    Article  Google Scholar 

  33. Alonso-Blanco C, Koorneef M. Naturally occurring variation in Arabidopsis: An underexploited resource for plant genetics. Trends Plant Sci 2000; 5:22–29.

    Article  PubMed  CAS  Google Scholar 

  34. Abbott RJ, Gomes MF. Population genetic structure and outcrossing rate of Arabidopsis thaliana. Heredity 1989; 42:411–418.

    Google Scholar 

  35. Charlesworth D, Charlesworth B, Morgan M. The pattern of neutral molecular variation under the background selection model. Genetics 1995; 141:1619–1632.

    PubMed  CAS  Google Scholar 

  36. Nordborg M, Charlesworth B, Charlesworth D. The effect of recombination on background selection. Genet Res Apr 1996; 67(2): 159–174.

    PubMed  CAS  Google Scholar 

  37. Bergelson J, Stahl E, Dudeck S et al. Genetic variation between and within populations of Arabidopsis thaliana. Genetics 1998; 148:1311–1323.

    PubMed  CAS  Google Scholar 

  38. Miyashita NT, Kawabe A, Innan H. DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics Aug 1999; 152(4): 1723–1731.

    PubMed  CAS  Google Scholar 

  39. Sharbel TF, Haubold B, Mitchell-Olds T. Genetic isolation by distance in Arabidopsis thaliana: Biogeography and postglacial colonization of Europe. Mol Ecol Dec 2000; 9(12):2109–2118.

    Article  PubMed  CAS  Google Scholar 

  40. Innan H, Stephan W. The coalescent in an exponentially growing metapopulation and its application to Arabidopsis thaliana. Genetics Aug 2000; 155(4):2015–2019.

    PubMed  CAS  Google Scholar 

  41. Johanson U, West J, Lister C et al. Molecular analysis of fri, a major determinant of natural variation in Arabidopsis flowering time. Science 2000; 290:344–347.

    Article  PubMed  CAS  Google Scholar 

  42. Le Corre V, Roux F, Reboud X. DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: Extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol 2002.

    Google Scholar 

  43. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics Nov 1989; 123(3):585–595.

    PubMed  CAS  Google Scholar 

  44. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature Jun 20 1991; 351(6328):652–654.

    Article  PubMed  CAS  Google Scholar 

  45. Pigliucci M. Ecological and evolutionary genetics of Arabidopsis. Trends Plant Sci Feb 1998; 3:485–489.

    Article  Google Scholar 

  46. Barton NH. Linkage and the limits to natural selection. Genetics 1995; 140:821–841.

    PubMed  CAS  Google Scholar 

  47. Clauss M, Cobban H, Mitchell-Olds T. Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaceae). Mol Ecol 2002; 11:591–601.

    Article  PubMed  CAS  Google Scholar 

  48. Stranger B. Molecular Population Genetics of Arabidopsis species [PhD thesis]. Missoula: Univer sity of Montana, 2002.

    Google Scholar 

  49. Workman PL, Niswander JD. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J Hum Genet 1970; 22:24–49.

    PubMed  CAS  Google Scholar 

  50. In: Balding JD, Bishop M, Cannings C, eds. Handbook of Statistical Genetics. Chichester, UK: Wiley, 2000.

    Google Scholar 

  51. Wright S. Evolution in Mendelian populations. Genetics 1931; 16:97–159.

    PubMed  CAS  Google Scholar 

  52. Hudson R. A new statistic for detecting genetic differentiation. Genetics 2000; 155:2011–2014.

    PubMed  CAS  Google Scholar 

  53. Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 2002; 160:765–777.

    PubMed  CAS  Google Scholar 

  54. Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and back ground selection. Genetics 1997; 147:915–925.

    PubMed  CAS  Google Scholar 

  55. Crow JF. Basic Concepts in Population, Quantitative, and Evolutionary Genetics. New York: Freeman, 1986.

    Google Scholar 

  56. Maynard Smith J, Haigh J. The hitch-hiking effect of a favorable gene. Genet Res 1974; 23:23–35.

    Google Scholar 

  57. Ohta T, Kimura M. The effect of a selected linked locus on heterozygosity of neutral alleles (the hitchhiking effect). Genet Res 1975; 25:313–326.

    Article  Google Scholar 

  58. Stephan W, Wiehe T, Lenz M. The effect of strongly selected substitutions on neutral polymorphism-analytical results based on diffusion theory. Theor Pop Biol 1992; 41:237–254.

    Article  Google Scholar 

  59. Kaplan N, Hudson R, Langley C. The “hitchiking effect” revisited. Genetics 1989; 123:887–899.

    PubMed  CAS  Google Scholar 

  60. An ancestral recombination graph. In: Griffiths RC, Marjoram P, Tavaré S, eds. Progress in population genetics and Human evolution. Berlin: Springer, 1997.

    Google Scholar 

  61. Barton NH. Genetic Hitch-hiking. Phil Trans R Soc Lond B 2000; 355:1553–1562.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Wiehe, T., Schmid, K., Stephan, W. (2005). Selective Sweeps in Structured Populations—Empirical Evidence and Theoretical Studies. In: Nurminsky, D. (eds) Selective Sweep. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27651-3_9

Download citation

Publish with us

Policies and ethics