Skip to main content

Maxwell’s Relation for Isotropic Bodies

  • Conference paper
Mechanics of Material Forces

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 11))

Abstract

The paper determines the forms of equations of force equilibrium and Maxwell’s relation for stable coherent phase interfaces in isotropic two-dimensional solids. If any of the two principal stretches of the first phase differs from the two principal stretches of the second phase, one obtains the equality of two generalized scalar forces and of a generalized Gibbs function. The forms of these quantities depend on whether the two principal stretches both increase (decrease) when crossing the interface or whether one of the stretches increases and the other decreases. Apart from this nondegenerate case, also the degenerate cases are discussed. The proofs use the rank 1 convexity condition for isotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G. Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2. J. Elasticity, 39:31–46, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubert, G. & Tahraoui, R. Sur la faible fermeture de certains ensembles de contrainte en élasticité non-linéaire plane. C. R. Acad. Sci. Paris, 290:537–540, 1980

    MathSciNet  MATH  Google Scholar 

  3. Ball, J. M. Convexity conditions and existence theorems in nonlinear elasticity Arch. Rational Mech. Anal., 63:337–403, 1977.

    Article  MATH  Google Scholar 

  4. Dacorogna, B. Direct methods in the calculus of variations. Springer, Berlin, 1989.

    MATH  Google Scholar 

  5. Ericksen, J. L. Continuous martensitic transitions in thermoelastic solids. J. Thermal Stresses, 4:107–119, 1981.

    Google Scholar 

  6. Rosakis, P. Characterization of convex isotropic functions. J. Elasticity, 49:257–267, 1997.

    Article  MathSciNet  Google Scholar 

  7. Šilhavý, M. The mechanics and thermodynamics of continuous media. Springer, Berlin, 1997.

    MATH  Google Scholar 

  8. Šilhavý, M. Convexity conditions for rotationally invariant functions in two dimensions. In Applied nonlinear functional analysis, A. Sequeira, H. Beirao da Veiga & J. Videman, editors, pp. 513–530. Kluwer Press. New York, 1999.

    Google Scholar 

  9. Šilhavý, M. On isotropic rank 1 convex functions. Proc. Roy. Soc. Edinburgh, 129A:1081–1105, 1999.

    Google Scholar 

  10. Šilhavý, M. Rank 1 perturbations of deformation gradients. Int. J. Solids Structures, 38:943–965, 2001.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Šilhavý, M. (2005). Maxwell’s Relation for Isotropic Bodies. In: Steinmann, P., Maugin, G.A. (eds) Mechanics of Material Forces. Advances in Mechanics and Mathematics, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-387-26261-X_28

Download citation

Publish with us

Policies and ethics