Skip to main content

Introduction to the ADAM Family

  • Chapter

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 4))

Abstract

ADAMs (proteins containing A Disintegrin and A Metalloprotease domain) are multidomain and multifunctional proteins that are emerging as key regulators of critical events that occur at the cell surface. Many ADAMs (roughly half) are active metalloproteases, and several of these (e.g. ADAMs 10, 17, and 19) exert important functions in vivo, for example in development of the heart and brain. The best-characterized in vivo activity of ADAM proteases is as ectodomain sheddases. By shedding cell surface proteins (e.g. cytokines and growth factors), ADAMs initiate extracellular signaling events (e.g. signaling through epidermal growth factor receptors). ADAM-mediated ectodomain shedding (e.g. of Notch) can also set the stage for important intracellular signaling events. ADAMs have also been reported to shed surface proteins involved in both cell-cell and cell-matrix adhesion. The disintegrin and cysteine-rich domains of ADAMs exhibit adhesive activities in tissue culture-based studies. The important roles that several proteolytically inactive ADAMs play in development (ADAMs 2, 3, 14, and 23) suggest that ADAM adhesive activities may be relevant to their function. In this chapter, we first review the history and phylogeny of the ADAMs as well as structural and functional aspects of their major domains. We next review how ADAMs function as ectodomain sheddases, how their protease activities may be regulated, and how ADAMs may function in modulating cell adhesion and cell migration. We end with a very brief discussion of the role of ADAMs in development and disease and conclude by posing some questions for future research. Our goal is to give an appreciation for the widespread, varied, and fascinating means by which ADAMs affect, or may affect, key cell surface events: cell signaling, cell adhesion, and cell migration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, S., Hundhausen, C., Mentlein, R., Schulte, A., Berkhout, T. A., Broadway, N., Hartmann, D., Sedlacek, R., Dietrich, S., Muetze, B., Schuster, B., Kallen, K. J., Saftig, P., Rose-John, S., and Ludwig, A. (2004). The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like d metalloproteinase ADAM10. J Immunol 172, 6362–72.

    PubMed  CAS  Google Scholar 

  • Alfandari, D., Cousin, H., Gaultier, A., Smith, K., White, J. M., Darribere, T., and DeSimone, D. W. (2001). Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration. Curr Biol 11, 918–30.

    Article  PubMed  CAS  Google Scholar 

  • Allinson, T. M., Parkin, E. T., Turner, A. J., and Hooper, N. M. (2003). ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74, 342–52.

    Article  PubMed  CAS  Google Scholar 

  • Anders, A., Gilbert, S., Garten, W., Postina, R., and Fahrenholz, F. (2001). Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. Faseb J 15, 1837–9.

    PubMed  CAS  Google Scholar 

  • Apte, S. S. (2004). A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol 36, 981–5.

    Article  PubMed  CAS  Google Scholar 

  • Argast, G. M., Campbell, J. S., Brooling, J. T., and Fausto, N. (2004). Epidermal growth factor receptor transactivation mediates tumor necrosis factor-induced hepatocyte replication. J Biol Chem 279, 34530–6.

    Article  PubMed  CAS  Google Scholar 

  • Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., Yoshinaka, T., Ohmoto, H., Node, K., Yoshino, K., Ishiguro, H., Asanuma, H., Sanada, S., Matsumura, Y., Takeda, H., Beppu, S., Tada, M., Hori, M., and Higashiyama, S. (2002). Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8, 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Baker, A. H., Edwards, D. R., and Murphy, G. (2002). Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115, 3719–27.

    Article  PubMed  CAS  Google Scholar 

  • Bao, J., Wolpowitz, D., Role, L. W., and Talmage, D. A. (2003). Back signaling by the Nrg-1 intracellular domain. J Cell Biol 161, 1133–41.

    Article  PubMed  CAS  Google Scholar 

  • Bax, D. V., Messent, A. J., Tart, J., Van Hoang, M., Kott, J., Maciewicz, R. A., and Humphries, M. J. (2004). Integrin {alpha}5{beta}1 and ADAM-17 Interact in Vitro and Co-localize in Migrating HeLa Cells. J Biol Chem 279, 22377–22386.

    Article  PubMed  CAS  Google Scholar 

  • Becherer, J. D., and Blobel, C. P. (2003). Biochemical properties and functions of membrane-anchored metalloprotease-disintegrin proteins (ADAMs). Curr Top Dev Biol 54, 101–23.

    PubMed  CAS  Google Scholar 

  • Black, R. A., Doedens, J. R., Mahimkar, R., Johnson, R., Guo, L., Wallace, A., Virca, D., Eisenman, J., Slack, J., Castner, B., Sunnarborg, S. W., Lee, D. C., Cowling, R., Jin, G., Charrier, K., Peschon, J. J., and Paxton, R. (2003). Substrate specificity and inducibility of TACE (tumour necrosis factor alpha-converting enzyme) revisited: the Ala-Val preference, and induced intrinsic activity. Biochem Soc Symp 70, 39–52.

    PubMed  CAS  Google Scholar 

  • Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J., and Cerretti, D. P. (1997). A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729–733.

    Article  PubMed  CAS  Google Scholar 

  • Bland, C. E., Kimberly, P., and Rand, M. D. (2003). Notch-induced proteolysis and nuclear localization of the Delta ligand. J Biol Chem 278, 13607–10.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, C. P., Wolfsberg, T. G., Turck, C. W., Myles, D. G., Primakoff, P., and White, J. M. (1992). A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356, 248–252.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, L. C., and Bowditch, R. D. (2004). ADAM-Integrin interactions; Potential integrin regulated ectodomain shedding activity. Current Pharmaceutical Design, in press.

    Google Scholar 

  • Bridges, L. C., Sheppard, D. and Bowditch, R. D. (2004). ADAM disintegrin-like domain recognition by the lymphocyte integrins alpha4beta1 and alpha4beta7. Biochem J, in press.

    Google Scholar 

  • Bridges, L. C., Hanson, K. R., Tani, P. H., Mather, T., and Bowditch, R. D. (2003). Integrin alpha4beta1-dependent adhesion to ADAM 28 (MDC-L) requires an extended surface of the disintegrin domain. Biochemistry 42, 3734–41.

    Article  PubMed  CAS  Google Scholar 

  • Cao, Y., Kang, Q., and Zolkiewska, A. (2001). Metalloprotease-disintegrin ADAM 12 interacts with alpha-actinin-1. Biochem. J. 357, 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Cho, C., Bunch, D. O., Faure, J. E., Goulding, E. H., Eddy, E. M., Primakoff, P., and Myles, D. G. (1998). Fertilization defects in sperm from mice lacking fertilin beta. Science 281, 1857–9.

    Article  PubMed  CAS  Google Scholar 

  • Costa, F. F., Verbisck, N. V., Salim, A. C., Ierardi, D. F., Pires, L. C., Sasahara, R. M., Sogayar, M. C., Zanata, S. M., Mackay, A., O’Hare, M., Soares, F., Simpson, A. J., and Camargo, A. A. (2004). Epigenetic silencing of the adhesion molecule ADAM23 is highly frequent in breast tumors. Oncogene 23, 1481–8.

    Article  PubMed  CAS  Google Scholar 

  • Cousin, H., Gaultier, A., Bleux, C., Darribere, T., and Alfandari, D. (2000). PACSIN2 is a regulator of the metalloprotease/disintegrin ADAM13. Dev Biol 227, 197–210.

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Rodriguez, E., Montero, J. C., Esparis-Ogando, A., Yuste, L., and Pandiella, A. (2002). Extracellular signal-regulated Kinase phosphorylates tumor necrosis factor alphaconverting enzyme at threonine 735: a potential role in regulated shedding. Mol Biol Cell 13, 2031–44.

    Article  PubMed  CAS  Google Scholar 

  • Doedens, J. R., Mahimkar, R. M., and Black, R. A. (2003). TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation. Biochem Biophys Res Commun 308, 331–8.

    Article  PubMed  CAS  Google Scholar 

  • Eble, J. A., Bruckner, P., and Mayer, U. (2003). Vipera lebetina venom contains two disintegrins inhibiting laminin-binding beta1 integrins. J Biol Chem 278, 26488–96.

    Article  PubMed  CAS  Google Scholar 

  • Eto, K., Huet, C., Tarui, T., Kupriyanov, S., Liu, H. Z., Puzon-McLaughlin, W., Zhang, X. P., Sheppard, D., Engvall, E., and Takada, Y. (2002). Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions. J Biol Chem 277, 17804–17810.

    Article  PubMed  CAS  Google Scholar 

  • Eto, K., Puzon-McLaughlin, W., Sheppard, D., Sehara-Fujisawa, A., Zhang, X.-P., and Takada, Y. (2000). RGD-independent binding of integrin a9b1 to the ADAM 12 and-15 disintegrin domains mediates cell-cell interaction. J Biol Chem 275, 34922–34930.

    Article  PubMed  CAS  Google Scholar 

  • Fahrenholz, F., Gilbert, S., Kojro, E., Lammich, S., and Postina, R. (2000). Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure. Ann N Y Acad Sci 920, 215–22.

    Article  PubMed  CAS  Google Scholar 

  • Fambrough, D., Pan, D., Rubin, G. M., and Goodman, C. S. (1996). The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila Proc Nat’l Acad Sci USA 93, 13233–13238.

    Article  CAS  Google Scholar 

  • Fan, H., Turck, C. W., and Derynck, R. (2003). Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. J Biol Chem 278, 18617–18627.

    Article  PubMed  CAS  Google Scholar 

  • Franzke, C. W., Tasanen, K., Borradori, L., Huotari, V., and Bruckner-Tuderman, L. (2004). Shedding of collagen XVII/BP180: structural motifs influence cleavage from cell surface. J Biol Chem 279, 24521–9.

    Article  PubMed  CAS  Google Scholar 

  • Galliano, M. F., Huet, C., Frygelius, J., Polgren, A., Wewer, U. M., and Engvall, E. (2000). Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha-actinin-2, is required for myoblast fusion. J. Biol. Chem. 275, 13933–13939.

    Article  PubMed  CAS  Google Scholar 

  • Gaultier, A., Cousin, H., Darribere, T., and Alfandari, D. (2002). ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin. J Biol Chem 277, 23336–44.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales, P. E., Solomon, A., Miller, A. B., Leesnitzer, M. A., Sagi, I., and Milla, M. E. (2004). Inhibition of the tumor necrosis factor-alpha-converting enzyme by its pro domain. J Biol Chem 279, 31638–45.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, D., de Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena Illert, A., von Figura, K., and Saftig, P. (2002). The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11, 2615–24.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, M., Osterfield, M., and Flanagan, J. G. (2000). Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360–1365.

    Article  PubMed  CAS  Google Scholar 

  • Herren, B., Garton, K. J., Coats, S., Bowen-Pope, D. F., Ross, R., and Raines, E. W. (2001). ADAM15 overexpression in NIH3T3 cells enhances cell-cell interactions. Exp Cell Res 271, 152–60.

    Article  PubMed  CAS  Google Scholar 

  • Hinkle, C. L., Mohan, M. J., Lin, P., Yeung, N., Rasmussen, F., Milla, M. E., and Moss, M. L. (2003). Multiple metalloproteinases process protransforming growth factor-alpha (proTGF-alpha). Biochemistry 42, 2127–36.

    Article  PubMed  CAS  Google Scholar 

  • Holen, I., Drury, N. L., Hargreaves, P. G., and Croucher, P. I. (2001). Evidence of a role for a non-matrix-type metalloproteinase activity in the shedding of syndecan-1 from human myeloma cells. Br J Haematol 114, 414–21.

    Article  PubMed  CAS  Google Scholar 

  • Hougaard, S., Loechel, F., Xu, X., Tajima, R., Albrechtsen, R., and Wewer, U. M. (2000). Trafficking of human ADAM 12-L: retention in the trans-Golgi network. Biochem Biophys Res Commun 275, 261–267.

    Article  PubMed  CAS  Google Scholar 

  • Howard, L., Maciewicz, R. A., and Blobel, C. P. (2000). Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem J 348, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Huang, P., Robinson, M. K., Stern, M. J., and Jin, Y. (2003). UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 130, 3147–61.

    Article  PubMed  CAS  Google Scholar 

  • Hundhausen, C., Misztela, D., Berkhout, T. A., Broadway, N., Saftig, P., Reiss, K., Hartmann, D., Fahrenholz, F., Postina, R., Matthews, V., Kallen, K. J., Rose-John, S., and Ludwig, A. (2003). The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102, 1186–95.

    Article  PubMed  CAS  Google Scholar 

  • Kaji, K., and Kudo, A. (2004). The mechanism of sperm-oocyte fusion in mammals. Reproduction 127, 423–9.

    Article  PubMed  CAS  Google Scholar 

  • Kajita, M., Itoh, Y., Chiba, T., Mori, H., Okada, A., Kinoh, H., and Seiki, M. (2001). Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153, 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, N., Sundberg, C., Kveiborg, M., Moghadaszadeh, B., Asmar, M., Dietrich, N., Thodeti, C. K., Nielsen, F. C., Moller, P., Mercurio, A. M., Albrechtsen, R., and Wewer, U. M. (2003). ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating ta1 integrin function. J Cell Sci 116, 3893–3904.

    Article  PubMed  CAS  Google Scholar 

  • Kojro, E., Gimpl, G., Lammich, S., Marz, W., and Fahrenholz, F. (2001). Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci U S A 98, 5815–20.

    Article  PubMed  CAS  Google Scholar 

  • LaVoie, M. J., and Selkoe, D. J. (2003). The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 278, 34427–37.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. H., Dodds, P., Verma, V., Maskos, K., Knauper, V., and Murphy, G. (2003). Tailoring tissue inhibitor of metalloproteinases-3 to overcome the weakening effects of the cysteine-rich domains of tumour necrosis factor-alpha converting enzyme. Biochem J 371, 369–76.

    Article  PubMed  CAS  Google Scholar 

  • Lemjabbar, H., and Basbaum, C. (2002). Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 8, 41–6.

    Article  PubMed  CAS  Google Scholar 

  • Lemjabbar, H., Li, D., Gallup, M., Sidhu, S., Drori, E., and Basbaum, C. (2003). Tobacco smoke-induced lung cell proliferation mediated by tumor necrosis factor alpha-converting d enzyme and amphiregulin. J Biol Chem 278, 26202–7.

    Article  PubMed  CAS  Google Scholar 

  • Lind, D. L., Choudhry, S., Ung, N., Ziv, E., Avila, P. C., Salari, K., Coyle, N. E., Nazario, S., Rodriguez-Santana, J. R., Salas, J., Selman, M., Boushey, H. A., Weiss, S. T., Chapela, R., Ford, J. G., Rodriguez-Cintron, W., Silverman, E. K., Sheppard, D., Kwok, P. Y., and Burchard, E. G. (2003). ADAM33 is not associated with asthma in puerto rican or mexican populations. Am J Respir Crit Care Med 168, 1312–6

    Article  PubMed  Google Scholar 

  • Marambaud, P., Wen, P. H., Dutt, A., Shioi, J., Takashima, A., Siman, R., and Robakis, N. K. (2003). A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114, 635–45.

    Article  PubMed  CAS  Google Scholar 

  • Marcinkiewicz, C. (2004). Functional characteristic of snake venom disintegrins: Potential therapeutic implication. Curr Pharm Design, in press.

    Google Scholar 

  • Martin, J., Eynstone, L. V., Davies, M., Williams, J. D., and Steadman, R. (2002). The role of ADAM 15 in glomerular mesangial cell migration. J Biol Chem 277, 33683–33689.

    Article  PubMed  CAS  Google Scholar 

  • Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., Reddy, P., Wolfson, M. F., Rauch, C. T., Castner, B. J., Davis, R., Clarke, H. R. G., Peterson, M., Fitzner, J. N., Cerretti, D. P., March, C. J., Paxton, R. J., Black, R. A., and Bode, W. (1998). Crystal structure of the catalytic domain of human tumor necrosis factor a-converting enzyme. Proc Nat’l Acad Sci USA 95, 3408–3412.

    Article  CAS  Google Scholar 

  • Matsui, T., Fujimura, Y., and Titani, K. (2000). Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 1477, 146–56.

    PubMed  CAS  Google Scholar 

  • Matthews, V., Schuster, B., Schutze, S., Bussmeyer, I., Ludwig, A., Hundhausen, C., Sadowski, T., Saftig, P., Hartmann, D., Kallen, K. J., and Rose-John, S. (2003). Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem 278, 38829–39.

    Article  PubMed  CAS  Google Scholar 

  • Mechtersheimer, S., Gutwein, P., Agmon-Levin, N., Stoeck, A., Oleszewski, M., Riedle, S., Fogel, M., Lemmon, V., and Altevogt, P. (2001). Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155, 661–73.

    Article  PubMed  CAS  Google Scholar 

  • Mohammed, F. F., Smookler, D. S., Taylor, S. E., Fingleton, B., Kassiri, Z., Sanchez, O. H., English, J. L., Matrisian, L. M., Au, B., Yeh, W. C., and Khokha, R. (2004). Abnormal TNF activity in Timp3(-/-) mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36, 969–77.

    Article  PubMed  CAS  Google Scholar 

  • Mori, S., Tanaka, M., Nanba, D., Nishiwaki, E., Ishiguro, H., Higashiyama, S., and Matsuura, N. (2003). PACSIN3 binds ADAM12/meltrin alpha and upregulates ectodomain shedding of heparin-binding EGF-like growth factor. J Biol Chem 278, 46029–34

    Article  PubMed  CAS  Google Scholar 

  • Moss, M. L., and Bartsch, J. W. (2004). Therapeutic benefits from targeting of ADAM family members. Biochemistry 43, 7227–35.

    Article  PubMed  CAS  Google Scholar 

  • Moss, M. L., Jin, S. L., Milla, M. E., Burkhart, W., Carter, H. L., Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, J. L., Warner, J., Becherer, J. D., and et, a. (1997). Cloning of a disintegrin metalloproteinase that processes precursor tumournecrosis factor-alpha. Nature 385, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Murai, T., Miyazaki, Y., Nishinakamura, H., Sugahara, K. N., Miyauchi, T., Sako, Y., Yanagida, T., and Miyasaka, M. (2004). Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J Biol Chem 279, 4541–50

    Article  PubMed  CAS  Google Scholar 

  • Murakami, D., Okamoto, I., Nagano, O., Kawano, Y., Tomita, T., Iwatsubo, T., De Strooper, B., Yumoto, E., and Saya, H. (2003). Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of CD44. Oncogene 22, 1511–6.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, O., Murakami, D., Hartmann, D., De Strooper, B., Saftig, P., Iwatsubo, T., Nakajima, M., Shinohara, M., and Saya, H. (2004). Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation. J Cell Biol 165, 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H., Suenaga, N., Taniwaki, K., Matsuki, H., Yonezawa, K., Fujii, M., Okada, Y., and Seiki, M. (2004a). Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res 64, 876–82.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Abe, H., Hirata, A., and Shimoda, C. (2004b). ADAM family protein Mde10 is essential for development of spore envelopes in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 3, 27–39.

    Article  PubMed  CAS  Google Scholar 

  • Nanba, D., Mammoto, A., Hashimoto, K., and Higashiyama, S. (2003). Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF. J Cell Biol 163, 489–502.

    Article  PubMed  CAS  Google Scholar 

  • Ni, C. Y., Murphy, M. P., Golde, T. E., and Carpenter, G. (2001). gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–81.

    Article  PubMed  CAS  Google Scholar 

  • Novak, U. (2004). ADAM proteins in the brain. J Clin Neurosci 11, 227–35.

    Article  PubMed  CAS  Google Scholar 

  • Orth, P., Reichert, P., Wang, W., Prosise, W. W., Yarosh-Tomaine, T., Hammond, G., Ingram, R. N., Xiao, L., Mirza, U. A., Zou, J., Strickland, C., Taremi, S. S., Le, H. V., and Madison, V. (2004). Crystal structure of the catalytic domain of human ADAM33. J Mol Biol 335, 129–37.

    Article  PubMed  CAS  Google Scholar 

  • Overall, C. M. (2002). Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 22, 51–86.

    Article  PubMed  CAS  Google Scholar 

  • Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A., and Horwitz, A. F. (1997). Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–40.

    Article  PubMed  CAS  Google Scholar 

  • Pan, D., and Rubin, G. M. (1997). Kuzbanian controls proteolytic processing of notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Peiretti, F., Deprez-Beauclair, P., Bonardo, B., Aubert, H., Juhan-Vague, I., and Nalbone, G. (2003). Identification of SAP97 as an intracellular binding partner of TACE. J Cell Sci 116, 1949–57.

    Article  PubMed  CAS  Google Scholar 

  • Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, B. J., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlsky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J., and Black, R. A. (1998). An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  • Poghosyan, Z., Robbins, S. M., Houslay, M. D., Webster, A., Murphy, G., and Edwards, D. R. (2002). Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases. J Biol Chem 277, 4999–5007.

    Article  PubMed  CAS  Google Scholar 

  • Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., Prinzen, C., Endres, K., Hiemke, C., Blessing, M., Flamez, P., Dequenne, A., Godaux, E., van Leuven, F., and Fahrenholz, F. (2004). A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113, 1456–64.

    Article  PubMed  CAS  Google Scholar 

  • Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., and Ullrich, A. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888.

    PubMed  CAS  Google Scholar 

  • Primakoff, P., Hyatt, H., and Tredick-Kline, J. (1987). Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol 104, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, P., Slack, J. L., Davis, R., Cerretti, D. P., Kozlosky, C. J., Blanton, R. A., Shows, D., Peschon, J. J., and Black, R. A. (2000). Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J Biol Chem 275, 14608–14.

    Article  PubMed  CAS  Google Scholar 

  • Rooke, J., Pan, D., Xu, T., and Rubin, G. M. (1996). KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273, 1227–31.

    PubMed  CAS  Google Scholar 

  • Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., and Blobel, C. P. (2004). Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164, 769–79.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, B., Gschwind, A., and Ullrich, A. (2004a). Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23, 991–9.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, B., Marg, B., Gschwind, A., and Ullrich, A. (2004b). Distinct ADAM metalloproteinases regulate G protein coupled receptor-induced cell proliferation and survival. J Biol Chem, in press

    Google Scholar 

  • Schlomann, U., Rathke-Hartlieb, S., Yamamoto, S., Jockusch, H., and Bartsch, J. W. (2000). Tumor necrosis factor alpha induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J Neurosci 20, 7964–7971.

    PubMed  CAS  Google Scholar 

  • Schlomann, U., Wildeboer, D., Webster, A., Antropova, O., Zeuschner, D., Knight, C. G., Docherty, A. J., Lambert, M., Skelton, L., Jockusch, H., and Bartsch, J. W. (2002). The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J Biol Chem 277, 48210–9.

    Article  PubMed  CAS  Google Scholar 

  • Seals, D. F., and Courtneidge, S. A. (2003). The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17, 7–30.

    Article  PubMed  CAS  Google Scholar 

  • Shao, M. X., Nakanaga, T., and Nadel, J. A. (2004). Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human f airway epithelial (NCI-H292) cells. Am J Physiol Lung Cell Mol Physiol 287, L420–7.

    Article  PubMed  CAS  Google Scholar 

  • Six, E., Ndiaye, D., Laabi, Y., Brou, C., Gupta-Rossi, N., Israel, A., and Logeat, F. (2003). The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gammasecretase. Proc Natl Acad Sci U S A 100, 7638–43.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K. M., Gaultier, A., Cousin, H., Alfandari, D., White, J. M., and DeSimone, D. (2002). The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol 159, 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Soejima, K., Matsumoto, M., Kokame, K., Yagi, H., Ishizashi, H., Maeda, H., Nozaki, C., Miyata, T., Fujimura, Y., and Nakagaki, T. (2003). ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage. Blood 102, 3232–7.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, A., Rosenblum, G., Gonzales, P. E., Leonard, J. D., Mobashery, S., Milla, M. E., and Sagi, I. (2004). Pronounced diversity in electronic and chemical properties between the catalytic zinc sites of tumor necrosis factor-alpha-converting enzyme and matrix metalloproteinases despite their high structural similarity. J Biol Chem 279, 31646–54.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, R. P., Longpre, J. M., Jungers, K. A., Engle, J. M., Ross, M., Evanko, S., Wight, T. N., Leduc, R., and Apte, S. S. (2003). Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 278, 9503–13.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Nanba, D., Mori, S., Shiba, F., Ishiguro, H., Yoshino, K., Matsuura, N., and Higashiyama, S. (2004). ADAM-binding protein eve-1 is required for ectodomain shedding of EGF receptor ligands. J Biol Chem, in press

    Google Scholar 

  • Thodeti, C. K., Albrechtsen, R., Grauslund, M., Asmar, M., Larsson, C., Takada, Y., Mercurio, A. M., Couchman, J. R., and Wewer, U. M. (2003). ADAM12/syndecan-4 signaling promotes beta 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA. J Biol Chem 278, 9576–84.

    Article  PubMed  CAS  Google Scholar 

  • Tomczuk, M., Takahashi, Y., Huang, J., Murase, S., Mistretta, M., Klaffky, E., Sutherland, A., Bolling, L., Coonrod, S., Marcinkiewicz, C., Sheppard, D., Stepp, M. A., and White, J. M. (2003). Role of multiple beta1 integrins in cell adhesion to the disintegrin domains of ADAMs 2 and 3. Exp Cell Res 290, 68–81.

    Article  PubMed  CAS  Google Scholar 

  • Tomczuk, M. (2004) ADAMs in early mouse development. University of Virginia PhD thesis, pp.278.

    Google Scholar 

  • Tschumperlin, D. J., Dai, G., Maly, I. V., Kikuchi, T., Laiho, L. H., McVittie, A. K., Haley, K. J., Lilly, C. M., So, P. T., Lauffenburger, D. A., Kamm, R. D., and Drazen, J. M. (2004). Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Van Eerdewegh, P., Little, R. D., Dupuis, J., Del Mastro, R. G., Falls, K., Simon, J., Torrey, D., Pandit, S., McKenny, J., Braunschweiger, K., Walsh, A., Liu, Z., Hayward, B., Folz, C., Manning, S. P., Bawa, A., Saracino, L., Thackston, M., Benchekroun, Y., Capparell, N., Wang, M., Adair, R., Feng, Y., Dubois, J., FitzGerald, M. G., Huang, H., Gibson, R., Allen, K. M., Pedan, A., Danzig, M. R., Umland, S. P., Egan, R. W., Cuss, F. M., Rorke, S., Clough, J. B., Holloway, J. W., Holgate, S. T., and Keith, T. P. (2002). Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430.

    Article  PubMed  CAS  Google Scholar 

  • Varney, T. R., Casademunt, E., Ho, H. N., Petty, C., Dolman, J., and Blumberg, D. D. (2002). A novel Dictyostelium gene encoding multiple repeats of adhesion inhibitor-like domains has effects on cell-cell and cell-substrate adhesion. Dev Biol 243, 226–48.

    Article  PubMed  CAS  Google Scholar 

  • Wakatsuki, S., Kurisaki, T., and Sehara-Fujisawa, A. (2004). Lipid rafts identified as locations of ectodomain shedding mediated by Meltrin beta/ADAM19. J Neurochem 89, 119–23.

    Article  PubMed  CAS  Google Scholar 

  • White, J. M. (2003). ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15, 598–606.

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg, T. G., Bazan, J. J., Blobel, C. P., Myles, D. G., Primakoff, P., and White, J. M. (1993). The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: Structural, functional and evolutionary implications. Proc. Natl. Acad. Sci. USA 90, 10783–10787.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, M. S., and Kopan, R. (2004). Intramembrane proteolysis: Theme and variations. Science 305, 1119–1123.

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg, T. G., Straight, P. D., Gerena, R. L., Huovila, A.-P. J., Primakoff, P., Myles, D. G., and White, J. M. (1995). ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev. Biol. 169, 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Yagami-Hiromasa, T., Sato, T., Kurisaki, T., Kamijo, K., Nabeshima, Y., and Fujisawa-Sehara, A. (1995). A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652–656.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Y., Shirakabe, K., and Werb, Z. (2002). The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol 158, 221–6.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, L., Shey, M., Farnsworth, M., and Dailey, M. O. (2001). Regulation of membrane metalloproteolytic cleavage of L-selectin (CD62l) by the epidermal growth factor domain. J Biol Chem 276, 30631–40.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., Schlondorff, J., and Blobel, C. P. (2002). Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem 277, 42463–70.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, P., Sun, Y., Xu, R., Sang, Y., Zhao, J., Liu, G., Cai, L., Li, C., and Zhao, S. (2003). The interaction between ADAM 22 and 14-3-3zeta: regulation of cell adhesion and spreading. Biochem Biophys Res Commun 301, 991–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

White, J., Bridges, L., DeSimone, D., Tomczuk, M., Wolfsberg, T. (2005). Introduction to the ADAM Family. In: Hooper, N.M., Lendeckel, U. (eds) The ADAM Family of Proteases. Proteases in Biology and Disease, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25151-0_1

Download citation

Publish with us

Policies and ethics