Skip to main content

X-Ray Diffraction Studies of Striated Muscles

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 565))

7. Conclusion

In this short review a number of recent X-ray diffraction results on the highly ordered striated muscles in insects and in bony fish have been briefly described. What is clear is that this technique applied to muscles which are amenable to rigorous analysis, taken together with related data from other sources (e.g. protein crystallography, biochemistry, mechanics, computer modelling) can provide not only the best descriptions yet available on the myosin head organisations on different myosin filaments in the relaxed state, but can also show the sequence of molecular events that occurs in the contractile cycle, and may also help to explain such phenomena as stretch-activation. X-ray diffraction is clearly an enormously powerful tool in studies of muscle. It has already provided a wealth of detail on muscle ultrastructure; it is providing ever more fascinating insights into molecular events in the 50-year old sliding filament mechanism, and there remains a great deal more potential that is as yet untapped.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agianian, B., Krzic, U., Qiu, F., Linke, W.A., Leonard, K. and Bullard, B., 2004, A troponin switch that regulates muscle contraction by stretch instead of calcium. EMBO J., 23, 772–779.

    Article  PubMed  CAS  Google Scholar 

  • AL-Khayat, H.A., Hudson, L., Reedy, M.K., Irving, T.C. and Squire, J.M., 2003, Myosin head configuration in relaxed insect flight muscle: X-ray modelled resting crossbridges in a pre-powerstroke state are poised for actin binding. Biophys. J. 85, 1063–1079.

    PubMed  CAS  Google Scholar 

  • AL-Khayat, H.A., Hudson, L., Reedy, M.K., Irving, T.C. and Squire, J.M., 2004, Modelling oriented macromolecular assemblies from low-angle X-ray fibre diffraction data with the program MOVIE: Insect Flight Muscle as example. Fibre Diffraction Review 12, 50–60.

    Article  Google Scholar 

  • Craig, R. and Lehman, W., 2002, The ultrastructural basis of actin filament regulation. Results Probl. Cell Differ. 36, 149–169.

    PubMed  CAS  Google Scholar 

  • Dominguez, R., Freyzon, Y., Trybus, K. M and Cohen, C, 1998, Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Celt 94, 559–571.

    Article  CAS  Google Scholar 

  • Elliott, G.F., Lowy, J. and Millman, B.M., 1967, Low-angle X-ray diffraction studies of living striated muscle during contraction. J. Molec. Biol. 25, 31–45.

    Article  PubMed  CAS  Google Scholar 

  • Freundlich, A. and Squire, J.M “Three-dimensional structure of the Insect (Lethocerus) flight muscle M-band” J. Mol. Biol. 169, 439–453 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Harford, J.J. and Squire, J.M., 1986, The ‘crystalline’ myosin crossbridge array in relaxed bony fish muscles, Biophys. J. 50, 145–155.

    PubMed  CAS  Google Scholar 

  • Harford, J. J. and Squire, J. M., 1992, Evidence for structurally different attached states of myosin cross-bridges on Actin during contraction of fish muscle. Biophys. J. 63, 387–396.

    PubMed  CAS  Google Scholar 

  • Harford, J.J. and Squire, J. M., 1997, Time-resolved diffraction studies of muscle using synchrotron radiation. Rep. Prog. Phys. 60, 1723–1787.

    Article  CAS  Google Scholar 

  • Harford, J.J., Luther, P.K. and Squire, J.M., 1994, Equatorial A-band and I-Band X-ray Diffraction from Relaxed and Active Fish Muscle: Further details of Myosin Crossbridge Behaviour. J. Molec. Biol. 239, 500–512.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C, 1996, Muscle proteins-their actions and interactions. Curr. Opin. Struct. Biol. 6, 781–789.

    Article  PubMed  CAS  Google Scholar 

  • Houdusse, A., Szent-Gyorgyi, A. G., and Cohen, C, 2000, Three conformational states of scallop myosin S1. Proc. Natl. Acad Sci. USA 97, 11238–11243.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, L., 1996, PhD Thesis, University of London.

    Google Scholar 

  • Hudson, L., Harford, J. J., Denny, R. C, and Squire, J. M., 1997, Myosin head configuration in relaxed fish muscle: resting state myosin heads must swing axially by up to 150 A or turn upside down to reach rigor. J. Molec. Biol. 273, 440–455.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, HE. and Brown, W., 1967, The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Molec. Biol. 30, 383–434.

    PubMed  CAS  Google Scholar 

  • Huxley, H.E., Faruqi, A.R., Bordas, J., Koch, M. and Milch, J.R., 1980, The use of synchrotron radiation in time-resolved X-ray diffraction studies of myosin layer-line reflections during muscle contraction. Nature 284, 140–143.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, HE., Faruqi, A.R., Kress, M., Bordas, J. and Koch, M.H.J., 1983, Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications. J. Molec. Biol. 169, 469–506.

    Article  PubMed  CAS  Google Scholar 

  • Irving, M, Piazzesi, G., Lucii, L., Sun, Y. B., Harford, J. J., Dobbie, I. M., Ferenczi, M. A., Reconditi, M, and Lombardi, V., 2000, Conformation of the myosin motor during force generation in skeletal muscle. Nat. Struct. Biol. 7, 482–485.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F., and Holmes, K.C., 1990, Atomic structure of the actin: DNase I complex. Nature 347, 37–44

    Article  PubMed  CAS  Google Scholar 

  • Kress, M, Huxley, H.E., Faruqi, A.R. and hendrix, J., 1986, Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J. Molec. Biol. 188, 325–342.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, R.A., Helsby, W.I., Jones, A.O., Hall, C.J., Parker, B., Sheldon, J., Clifford, P., Hillen, M., Sumner, I., Fore, N.S., Jones, R.W.M. and Roberts, K., 1997, The “RAPID” high rate large area X-ray detector system. Nucl. Inst.Methods Phys. Res. A, 392, 32–41.

    Article  CAS  Google Scholar 

  • Linari, M., Reedy, M.K., Reedy, M.C., Lombardi, V. and Piazzesi, G., 2004, Ca-Activation and Stretch-Activation in Insect Flight Muscle. Biophys. J. 87, 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi, V., Piazzesi, G., Ferenczi, M.A., Thirlwell, H., Dobbie, I. and Irving, M., 1995, Elastic distortion of myosin heads and repriming of the working stroke in muscle. Nature 374, 553–555.

    Article  PubMed  CAS  Google Scholar 

  • Luther, P. K., and Squire, J. M., 1980, Three-dimensional structure of the vertebrate muscle A-band. II. The myosin filament superlattice. J. Molec. Biol. 141, 409–439.

    Article  PubMed  CAS  Google Scholar 

  • Luther, P.K., Munro, P.M.G. and Squire, J.M., 1981, Three-dimensional structure of the vertebrate muscle A-band HI: M-region structure and myosin filament symmetry. J. Molec. Biol. 151, 703–730.

    Article  PubMed  CAS  Google Scholar 

  • Luther, P. K., Squire, J. M., and Forey, P. L., 1996, Evolution of myosin filament arrangements in vertebrate skeletal muscle. J. Morphol. 229, 325–335.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Fernandez, MX., Bordas, J., Diakun, G., Harries, J., Lowy, J., Mant, G.R., Svennson, A. and Towns-Andrews, E, 1994, Time-resolved X-ray diffraction studies of myosin head movements in live frog sartorius muscle during isometric and isotonic contractions. J. Mus. Res. Cell Motil. 15, 319–348.

    Article  CAS  Google Scholar 

  • Moore, J.R., Dickinson, M.H., Vigoreaux, J.O. and Maughan, D.W., 2000, The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirect flight muscle. Biophys. J. 78, 1431–1440.

    Article  PubMed  CAS  Google Scholar 

  • Morris, E. P., Squire, J. M., and Fuller, G. W., 1991, The 4-stranded helical arrangement of myosin heads on insect (Lethocerus) flight muscle thick filaments. J. Struct. Biol. 107, 237–249.

    Article  Google Scholar 

  • Piazzesi, G., Reconditi, M., Linari, M., Lucii, L., Sun, Y.B., Narayan, T., Boesecke, P., Lombardi, V. and Irving, M., 2002, Mechanism of force generation by myosin heads in skeletal muscle. Nature 415, 659–662.

    Article  PubMed  CAS  Google Scholar 

  • Pringle, J.W.S., 1978, The Croonian Lecture, 1977: Stretch-activation of muscle: function and mechanism. Proc. Roy. Soc. Land B. 201, 107–130.

    CAS  Google Scholar 

  • Rayment, I., Rypniewsky, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G., and Holden, H. M., 1993a, Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58.

    Article  PubMed  CAS  Google Scholar 

  • Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C, and Milligan, R. A., 1993b, Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Reconditi, M., Koubassova, N., Linari, M., Dobbie, I., Narayan, T. Diat, O., Piazzesi, G. Lombardi, V. and Irving, M., 2003, The conformation of myosin head domains in rigor muscle determined by X-ray interference. Biophys. J. 85, 1098–1110.

    PubMed  CAS  Google Scholar 

  • Squire, J.M., 1972, General model of myosin filament structure II: myosin filaments and crossbridge interactions in vertebrate striated and insect flight muscles” J. Molec. Biol. 72, 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Squire, J.M., 1992, Muscle filament lattices and stretch-activation: The match/ mismatch model reassessed., J. Musc. Res. Cell Motil. 13, 183–189.

    Article  CAS  Google Scholar 

  • Squire, J.M., 1997, Architecture and function in the muscle sarcomere. Curr. Opin. Struct. Biol. 7, 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Squire, J. M., 1998, Time-resolved X-ray diffraction. In Current Methods In Muscle Physiology, H. Sugi, ed. (Oxford, Oxford Univ. Press), pp. 241–285.

    Google Scholar 

  • Squire, J. M, 2000, Fibre and Muscle Diffraction. In Structure and Dynamics of Biomolecules, E. Fanchon, E. Geissler, L.-L. Hodeau, J.-R. Regnard, and P. Timmins, eds. (Oxford, UK, Oxford Univ. Press), pp. 272–301.

    Google Scholar 

  • Squire, J.M. and Harford, J.J., 1988, Actin filament organisation and myosin head labelling patterns in vertebrate skeletal muscles in the rigor and weak-binding states. J. Mus. Res. Cell Motil. 9, 344–358

    Article  CAS  Google Scholar 

  • Squire, J.M. and Morris, E.P., 1998, A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J. 12, 761–771

    PubMed  CAS  Google Scholar 

  • Squire, J.M. and Knupp, C, 2004, Simulation of Muscle Diffraction Patterns using the MusLABEL Program. J. Mus. Res. Cell Motil. — in press. [Also see: www.ccpl3.ac.uk]

    Google Scholar 

  • Squire, J. M., Cantino, M., Chew, M., Denny, R., Harford, J., Hudson, L., and Luther, P., 1998, Myosin rod-packing schemes in vertebrate muscle thick filaments. J. Struct. Biol. 122, 128–138.

    Article  PubMed  CAS  Google Scholar 

  • Squire, J.M., Luther, P.K. and Knupp, C, 2003a, Structural evidence for the interaction of C-protein (MyBP-C) with actin and sequence identification of a possible actin-binding domain. J. Molec. Biol. 331, 713–724.

    Article  PubMed  CAS  Google Scholar 

  • Squire, J.M., Roessle, M and Knupp, C, 2004a, Setting the scene for muscle motor action: New X-ray Diffraction analysis on C-protein (MyBP-C), Titin, Nebulin and Troponin in the A-band. J. Molec. Biol. In press.

    Google Scholar 

  • Squire, J.M., Harford, J J., AL-Khayat, H.A., Roessle, M. and Knupp, C, 2004b, Steric constraints on muscle motor action: Evidence for Target Area Labelling in Rigor Bony Fish Muscle, (in preparation).

    Google Scholar 

  • Squire, J.M., AL-Khayat, H.A., Arnott, A., Crawshaw, J., Denny, R., Diakun, G., Dover, S.D., Forsyth, V.T., He, A., Knupp, C, Mant, G., Rajkumar, G., Rodman, MX, Shotton, M. and Windle, AH., 2003b, New CCP13 software and the strategy behind further developments: Stripping and modelling of fibre diffraction data. Fibre Diffraction Review 11, 7–19.

    Article  Google Scholar 

  • Squire, JM., Knupp, C, AL-Khayat, H.A. and Harford, J.J., 2003c, Millisecond time-resolved low-angle X-ray diffraction: a powerful, high-sensitivity technique for modelling real-time movements in biological macromolecular assemblies. Fibre Diffraction Review 11, 28–35.

    Article  Google Scholar 

  • Squire, J.M., AL-Khayat, H.A., Harford, J.J., Hudson, L., Irving, T.C., Knupp, C, Mok, N-S. and Reedy, M.K., 2003d, Myosin filament structure and myosin crossbridge dynamics in fish and insect muscles. In ‘Molecular and cellular aspects of muscle contraction’ (Ed. H. Sugi). Advances in experimental medicine and biology. Volume 538, pp. 251–266. Kluwer/Plenum.

    Google Scholar 

  • Squire, J.M., AL-Khayat, H.A., Harford, J.J., Hudson, L., Irving, T., Knupp, C. and Reedy. M.K., 2003e, Modelling muscle motor conformations using Low-angle X-ray diffraction. Proc. Bio-Nanotechnol. 150, 103–110.

    CAS  Google Scholar 

  • Tregear, R.T., 1983, Physiology of insect flight muscle. In Peachey LD, Adrian, RH, Geiger SR (eds). Skeletal Muscle. Bethesda, MD: American Physiological Society, pp. 487–506.

    Google Scholar 

  • Vibert, P.J., Craig, R. and Lehman, W., 1997, Steric-model for activation of muscle thin filaments. J. Molec. Biol. 266, 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Wray, J.S., 1979, Filament geometry and the activation of insect flight muscle. Nature 280, 325–326.

    Article  Google Scholar 

  • Xu, S., Gu, J., Rhodes, T., Belknap, B., Rosenbaum, G., Offer, G., White, H., and Yu, L. C, 1999, The M.ADP.P(i) state is required for helical order in the thick filaments of skeletal muscle. Biophys. J. 11, 2665–2676.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Squire, J.M. et al. (2005). X-Ray Diffraction Studies of Striated Muscles. In: Sugi, H. (eds) Sliding Filament Mechanism in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 565. Springer, Boston, MA. https://doi.org/10.1007/0-387-24990-7_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-24990-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24989-6

  • Online ISBN: 978-0-387-24990-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics