Skip to main content

From Inward Spread of Activation, Active Elongation to the Effect of Organic Calcium Channel Blockers in Muscle Excitation-Contraction Coupling

  • Conference paper
Sliding Filament Mechanism in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 565))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. H. Sugi, Inward spread of activation in frog muscle fibres investigated by means of high-seed, microcinematography, J. Physiol. 242, 219–235 (1974).

    PubMed  CAS  Google Scholar 

  2. H. Sugi and R. Ochi, The mode of transverse spread of contraction initiated by local activation in single crayfish muscle fibres, J. Gen. Physiol. 50, 2167–2176.

    Google Scholar 

  3. H. Sugi and R. Ochi, The mode of transverse spread of contraction initiated by local activation in single frog muscle fibres, J. Gen. Physiol. 50, 2145–2166 (1967).

    Article  Google Scholar 

  4. A. F. Huxley, Local activation in muscle, Ann. NY Acad. Sci. 81, 446–452 (1959).

    Article  PubMed  CAS  Google Scholar 

  5. A. F. Huxley, and R. W. Straub, Local activation and interfibrillar structures in striated muscle, J. Physiol. London 143, 40P–41P (1958).

    Google Scholar 

  6. A. F. Huxley and R. E. Taylor, Function of Krause’s membrane, Nature London 176, 1068 (1955).

    Article  PubMed  CAS  Google Scholar 

  7. A. F. Huxley and R. E. Taylor, Local activation of striated muscle fibres, J. Physiol. London 144, 426–441 (1958).

    PubMed  CAS  Google Scholar 

  8. A. F. Huxley, The Croonian Lecture, 1967. The activation of striated muscle and its mechanical response. Proc. R. Soc. London Ser. B 178, 1–27 (1971).

    CAS  Google Scholar 

  9. H. Gonzalez-Serratos, Inward spread of activation in vertebrate muscle fibres, J. Physiol London 212 777–799 (1971).

    PubMed  CAS  Google Scholar 

  10. H. Gonzalez-Serratos, Inward spread of activation in twitch skeletal muscle fibers, in: Handbook of Physiology: Skeletal Muscle by L.D. Peachey, R. H. Adrian and S. R. Geiger (American Physiological Society, Bethesda, Maryland, 1983).

    Google Scholar 

  11. F. C. Bezanilla, C. Caputo, H. Gonzalez-Serratos, and R. A. Venosa, Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog, J. Physiol. London 223, 507–523 (1972).

    PubMed  CAS  Google Scholar 

  12. C. Caputo and R. DiPolo, Ionic diffusion delays in the transverse tubules of frog twitch muscle fibres, J. Physiol. London 229, 547–557 (1973).

    PubMed  CAS  Google Scholar 

  13. J. Bastian and S. Nakajima, Action potential in the transverse tubules and its role in the activation of skeletal muscle, J. Gen. Physiol. 63, 257–278 (1974).

    Article  PubMed  CAS  Google Scholar 

  14. R. H. Adrian and L. D. Peachey, Reconstruction of the action potential of frog sartorius muscle, J. Physiol. London 235. (1973).

    Google Scholar 

  15. H. Davson, A Textbook of General Physiology, (The Williams and Wilkins Co., Baltimore, Marylnd, 1970) pp. 1387–1455.

    Google Scholar 

  16. R. W. Ramsey and S. F., The isometric length-tension diagram of isolated skeletal muscle fibres of the frog, J. Cell. Comp. Physiol. 9, 11–34 (1940).

    Article  Google Scholar 

  17. A. V. Hill, Is relaxation an active process? Proc. R. Soc. B 136, 420–425 (1949).

    CAS  Google Scholar 

  18. L. M. Brown, H. Gonzalez-Serratos and A. F. Huxley, Structural studies of the waves in striated muscle fibres shortened passively below their slack length, J. Musc. Res. Cell Motility 5, 273–292 (1984).

    Article  CAS  Google Scholar 

  19. L. M. Brown, H. Gonzalez-Serratos and A. F. Huxley, Sarcomere and filament lengths in passive muscle fibres with wavy myofibrils, J. Musc. Res. Cell Motility 5, 293–314 (1984).

    Article  CAS  Google Scholar 

  20. A. F. Huxley, Review Lecture Muscular Contraction given at the meeting of the Physiological Society at Leeds University on 14–15 December 1973, J. Physiol. 243, 1–43 (1974).

    PubMed  CAS  Google Scholar 

  21. K. Wang, R. McCarter, J. Wright, J. Beverly and R. Ramirez-Mitchell, Viscoelasticity of the sarcomere matrix of skeletal muscles: The titin-myosin composite filament is a dual-stagae molecular spring, Biophys. J. 64, 1161–1177 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. C. A. Opitz, M. Kulke, M. C. Leake, C. Neagoe, H. Hinssen, R. J. Hajjar and W. A. Linke, Damped elastic recoil of the titin spring in myofibrils of human myocardium, PNAS 100(22), 12688–12693 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. A. Sandow, Excitation-contraction coupling in muscular response, J. Biol. Med. 25, 176–201 (1952).

    CAS  Google Scholar 

  24. B. A. Curtis, Ca fluxes in single twitch muscle fibers, J. Gen. Physiol. 50, 255–267 (1966).

    Article  PubMed  CAS  Google Scholar 

  25. C. M. Amstrong, F. M. Bezanilla and P. Horowicz, Twitches in the presence of ethylen glycol bis (aminoethyl ether)-N,N, tetraacetic acid, Biocem. Biophys. Acta 267, 605–608 (1972).

    Article  Google Scholar 

  26. H. Luttgau and W. Spiecker, The effect of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibers of the frog, J. Physiol. 296, 411–429.

    Google Scholar 

  27. J. Sanchez and E. Stefani, Inward calcium current in twitch muscle fibres of the frog, J. Physiol. 283, 197–209 (1978).

    PubMed  CAS  Google Scholar 

  28. W. Aimers, R. Fuik and P. T. Palade, Calcium depletion in frog muscle tubules: the decline of muscle current under maintained depolarisation, J. Physiol. 312, 177–207 (1981).

    Google Scholar 

  29. A. Ortega, H. Gonzalez-Serratos and J. Lepock, Effect of organic calcium channel blocker D-600 on sarcoplasmic reticulum calcium uptake in skeletal muscle, Am. J. Physiol. Cell Physiol. 41) 272, C310–C317 (1997).

    CAS  Google Scholar 

  30. A. Ortega, V. M. Becker, R. Alvarez, H. Gonzalez-Serratos and J. R. Lepock, Interaction of D-600 with the tresmembrane domain of the Sarcoplasmic reticulum Ca2+ ATPase from skeletal muscle. Am. J. Physiol. (Cell Physiol.)(2000)

    Google Scholar 

  31. J. Hescheler, D. Perzer, D. Trube and W. Trautwein, Does the organic calcium channel blocker D-600 act from inside or outside on the cardiac cell membrane? Pfluegers Arch. 393, 287–291 (1982).

    Article  CAS  Google Scholar 

  32. M. Dorrscheidt-Kafer, M. The action of D-600 on frog skeletal muscle: facilitation of excitation-contraction coupling, Pfluegers Arch. 369, 259–267 (1977).

    Article  CAS  Google Scholar 

  33. H. Gonzalez-Serratos, R. Valle-Aguilera, D. A. Lathrop and M. D. Garcia, M.D. Slow inward calcium currents have no obvious role in frog twitch muscle excitation-contraction coupling, Nature 298, 292–294 (1982).

    Article  PubMed  CAS  Google Scholar 

  34. H. Gonzalez-Serratos, L. Hill and R. Valle-Aguilera, Effects of Catecholamines and Cyclic Amp on Excitation-Contraction Coupling in Isolated Skeletal Muscle Fibres of the Frog, J. Physiol. 315, 267–282 (1981).

    PubMed  CAS  Google Scholar 

  35. M. Endo and Y. Nakajima, release of clcium induced by depolarization of the sarcoplasmic reticulum membrane, Nature NewBiology 246, 216–218 (1973).

    Google Scholar 

  36. J. R. Lepock, A. M. Rodahl, C. Zhang, M. Heynen, B. Waters and K.-H. Cheng, Thermal denaturation of the Ca2+ ATPase of sarcoplasmic reticulum reveals two thermodynamically independent domains, Biochemistry 29, 681–689 (1990).

    Article  PubMed  CAS  Google Scholar 

  37. M. Chiesi and A. Martonosi, Clcium transport in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle, Membrane Biochemistry, edited by E. Carafoli and G. Semenza (Springer-Verlag, N.Y., 1989) pp. 51–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Gonzalez-Serratos, H., Ortega, A., Valle-Aguilera, R., Chang, R. (2005). From Inward Spread of Activation, Active Elongation to the Effect of Organic Calcium Channel Blockers in Muscle Excitation-Contraction Coupling. In: Sugi, H. (eds) Sliding Filament Mechanism in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 565. Springer, Boston, MA. https://doi.org/10.1007/0-387-24990-7_19

Download citation

  • DOI: https://doi.org/10.1007/0-387-24990-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24989-6

  • Online ISBN: 978-0-387-24990-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics