Skip to main content

Survivin, other IAPs, Smac/Diablo, and Omi/Htra2 — Modulation of the Advancing Apoptotic Process

  • Chapter
Apoptotic Pathways as Targets for Novel Therapies in Cancer and Other Diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Adrain C, Creagh EM & Martin SJ. (2001). Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J, 20:6627–36.

    Article  PubMed  CAS  Google Scholar 

  • Altieri DC. (2003a). Survivin and apoptosis control. Adv Cancer Res, 88:31–52.

    Article  PubMed  CAS  Google Scholar 

  • Altieri DC. (2003b). Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene, 22:8581–9.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini G, Adida C & Altieri DC. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 3:917–21.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini G, Adida C, Sirugo G, et al. (1998). Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem, 273:11177–82.

    Article  PubMed  CAS  Google Scholar 

  • Andersen MH, Pedersen LO, Becker JC, et al. (2001a). Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res, 61:869–72.

    PubMed  CAS  Google Scholar 

  • Andersen MH, Pedersen LO, Capeller B, et al. (2001b). Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res, 61:5964–8.

    PubMed  CAS  Google Scholar 

  • Ansell SM, Arendt BK, Grote DM, et al. (2004). Inhibition of survivin expression suppresses the growth of aggressive non-Hodgkin’s lymphoma. Leukemia, 18:616–23.

    Article  PubMed  CAS  Google Scholar 

  • Arnt CR, Chiorean MV, Heldebrant MP, et al. (2002). Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem, 277:44236–43.

    Article  PubMed  CAS  Google Scholar 

  • Bao R, Connolly DC, Murphy M, et al. (2002). Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst, 94:522–8.

    PubMed  CAS  Google Scholar 

  • Beltrami E, Plescia J, Wilkinson JC, et al. (2004). Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. J Biol Chem, 279:2077–84.

    Article  PubMed  CAS  Google Scholar 

  • Bilim V, Kasahara T, Hara N, et al. (2003). Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro. Int J Cancer, 103:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Birkey Reffey S, Wurthner JU, Parks WT, et al. (2001). X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J Biol Chem, 276:26542–9.

    Article  PubMed  CAS  Google Scholar 

  • Carter BZ, Milella M, Altieri DC, et al. (2001). Cytokine-regulated expression of survivin in myeloid leukemia. Blood, 97:2784–90.

    Article  PubMed  CAS  Google Scholar 

  • Chai J, Du C, Wu JW, et al. (2000). Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature, 406:855–62.

    Article  PubMed  CAS  Google Scholar 

  • Chai J, Shiozaki E, Srinivasula SM, et al. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell, 104:769–80.

    Article  PubMed  CAS  Google Scholar 

  • Chantalat L, Skoufias DA, Kleman JP, et al. (2000). Crystal structure of human survivin reveals a bow tieshaped dimer with two unusual alpha-helical extensions. Mol Cell, 6:183–9.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Wu W, Tahir SK, et al. (2000). Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Neoplasia, 2:235–41.

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Naito M, Hori S, et al. (1999). A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun, 264:847–54.

    Article  PubMed  CAS  Google Scholar 

  • Choi KS, Lee TH & Jung MH. (2003). Ribozyme-mediated cleavage of the human survivin mRNA and inhibition of antiapoptotic function of survivin in MCF-7 cells. Cancer Gene Ther, 10:87–95.

    Article  PubMed  CAS  Google Scholar 

  • Chu ZL, McKinsey TA, Liu L, et al. (1997). Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci USA, 94:10057–62.

    Article  PubMed  CAS  Google Scholar 

  • Cilenti L, Lee Y, Hess S, et al. (2003). Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2. J Biol Chem, 278:11489–94.

    Article  PubMed  CAS  Google Scholar 

  • Crocker SJ, Liston P, Anisman H, et al. (2003). Attenuation of MPTP-induced neurotoxicity and behavioural impairment in NSE-XIAP transgenic mice. Neurobiol Dis, 12:150–61.

    Article  PubMed  CAS  Google Scholar 

  • Crocker SJ, Wigle N, Liston P, et al. (2001). NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson’s disease. Eur J Neurosci, 14:391–400.

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Ren X, Yang L, et al. (2003). A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell, 115:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux QL, Leo E, Stennicke HR, et al. (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J, 18:5242–51.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux QL & Reed JC. (1999). IAP family proteins—suppressors of apoptosis. Genes Dev, 13:239–52.

    PubMed  CAS  Google Scholar 

  • Deveraux QL, Roy N, Stennicke HR, et al. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J, 17:2215–23.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux QL, Takahashi R, Salvesen GS, et al. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature, 388:300–4.

    Article  PubMed  CAS  Google Scholar 

  • Du C, Fang M, Li Y, et al. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102:33–42.

    Article  PubMed  CAS  Google Scholar 

  • Duckett CS, Li F, Wang Y, et al. (1998). Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol Cell Biol, 18:608–15.

    PubMed  CAS  Google Scholar 

  • Duckett CS, Nava VE, Gedrich RW, et al. (1996). A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J, 15:2685–94.

    PubMed  CAS  Google Scholar 

  • Faccio L, Fusco C, Chen A, et al. (2000a). Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem, 275:2581–8.

    Article  PubMed  CAS  Google Scholar 

  • Faccio L, Fusco C, Viel A, et al. (2000b). Tissue-specific splicing of Omi stress-regulated endoprotease leads to an inactive protease with a modified PDZ motif. Genomics, 68:343–7.

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrog B, Sauder U & Aebi U. (2004). The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci, 117:115–26.

    Article  PubMed  CAS  Google Scholar 

  • Fortugno P, Beltrami E, Plescia J, et al. (2003). Regulation of survivin function by Hsp90. Proc Natl Acad Sci USA, 100:13791–6.

    Article  PubMed  CAS  Google Scholar 

  • Fortugno P, Wall NR, Giodini A, et al. (2002). Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J Cell Sci, 115:575–85.

    PubMed  CAS  Google Scholar 

  • Franklin MC, Kadkhodayan S, Ackerly H, et al. (2003). Structure and function analysis of peptide antagonists of melanoma inhibitor of apoptosis (ML-IAP). Biochemistry, 42:8223–31.

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Jin Y & Arend LJ. (2003). Smac3, a novel Smac/DIABLO splicing variant, attenuates the stability and apoptosis-inhibiting activity of X-linked inhibitor of apoptosis protein. J Biol Chem, 278:52660–72.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda S & Pelus LM. (2001). Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34(+) cells by hematopoietic growth factors:implication of survivin expression in normal hematopoiesis. Blood, 98:2091–100.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda S & Pelus LM. (2002). Elevation of Survivin Levels by Hematopoietic Growth Factors Occurs in Quiescent CD34(+) Hematopoietic Stem and Progenitor Cells Before Cell Cycle Entry. Cell Cycle, 1:322–6.

    PubMed  CAS  Google Scholar 

  • Fulda S, Wick W, Weller M, et al. (2002). Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med, 8:808–15.

    PubMed  CAS  Google Scholar 

  • Gray CW, Ward RV, Karran E, et al. (2000). Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem, 267:5699–710.

    Article  PubMed  CAS  Google Scholar 

  • Grossman D, McNiff JM, Li F, et al. (1999a). Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol, 113:1076–81.

    Article  PubMed  CAS  Google Scholar 

  • Grossman D, McNiff JM, Li F, et al. (1999b). Expression of the apoptosis inhibitor, survivin, in nonmelanoma skin cancer and gene targeting in a keratinocyte cell line. Lab Invest, 79:1121–6.

    PubMed  CAS  Google Scholar 

  • Guo F, Nimmanapalli R, Paranawithana S, et al. (2002). Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood, 99:3419–26.

    Article  PubMed  CAS  Google Scholar 

  • Hahnen E, Forkert R, Marke C, et al. (1995). Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy:evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet, 4:1927–33.

    PubMed  CAS  Google Scholar 

  • Harlin H, Reffey SB, Duckett CS, et al. (2001). Characterization of XIAP-deficient mice. Mol Cell Biol, 21:3604–8.

    Article  PubMed  CAS  Google Scholar 

  • Hegde R, Srinivasula SM, Zhang Z, et al. (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem, 277:432–8.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT, et al. (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem, 277:3247–57.

    Article  PubMed  CAS  Google Scholar 

  • Holcik M, Thompson CS, Yaraghi Z, et al. (2000). The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc Natl Acad Sci USA, 97:2286–90.

    Article  PubMed  CAS  Google Scholar 

  • Hu SI, Carozza M, Klein M, et al. (1998). Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage. J Biol Chem, 273:34406–12.

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Cherton-Horvat G, Dragowska V, et al. (2003). Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res, 9:2826–36.

    PubMed  CAS  Google Scholar 

  • Huang Y, Park YC, Rich RL, et al. (2001). Structural basis of caspase inhibition by XIAP:differential roles of the linker versus the BIR domain. Cell, 104:781–90.

    PubMed  CAS  Google Scholar 

  • Jiang X, Wilford C, Duensing S, et al. (2001). Participation of Survivin in mitotic and apoptotic activities of normal and tumor-derived cells. J Cell Biochem, 83:342–54.

    Article  PubMed  CAS  Google Scholar 

  • Jones JM, Datta P, Srinivasula SM, et al. (2003). Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature, 425:721–7.

    Article  PubMed  CAS  Google Scholar 

  • Kanwar JR, Shen WP, Kanwar RK, et al. (2001). Effects of survivin antagonists on growth of established tumors and b7-1 immunogene therapy. J Natl Cancer Inst, 93:1541–52.

    Article  PubMed  CAS  Google Scholar 

  • Kappler M, Bache M, Bartel F, et al. (2004). Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther.

    Google Scholar 

  • Kasof GM & Gomes BC. (2001). Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem, 276:3238–46.

    Article  PubMed  CAS  Google Scholar 

  • Kipp RA, Case MA, Wist AD, et al. (2002). Molecular targeting of inhibitor of apoptosis proteins based on small molecule mimics of natural binding partners. Biochemistry, 41:7344–9.

    Article  PubMed  CAS  Google Scholar 

  • Kugler S, Straten G, Kreppel F, et al. (2000). The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ, 7:815–24.

    Article  PubMed  CAS  Google Scholar 

  • Kuttler F, Valnet-Rabier MB, Angonin R, et al. (2002). Relationship between expression of genes involved in cell cycle control and apoptosis in diffuse large B cell lymphoma:a preferential survivin-cyclin B link. Leukemia, 16:726–35.

    Article  PubMed  CAS  Google Scholar 

  • Li F. (2003). Survivin Study: What is the next wave? J Cell Physiol, 197:8–29.

    Article  PubMed  CAS  Google Scholar 

  • Li F, Ackermann EJ, Bennett CF, et al. (1999). Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol, 1:461–6.

    Article  PubMed  CAS  Google Scholar 

  • Li F & Altieri DC. (1999). The cancer antiapoptosis mouse survivin gene:characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res, 59:3143–51.

    PubMed  CAS  Google Scholar 

  • Li F, Ambrosini G, Chu EY, et al. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 396:580–4.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Feng Q, Kim JM, et al. (2001). Human ovarian cancer and cisplatin resistance:possible role of inhibitor of apoptosis proteins. Endocrinology, 142:370–80.

    Article  PubMed  CAS  Google Scholar 

  • Ling X, Bernacki RJ, Brattain MG, et al. (2004). Induction of survivin expression by taxol (paclitaxel) is an early event which is independent on taxol-mediated G2/M arrest. J Biol Chem, 279:15196–203.

    Article  PubMed  CAS  Google Scholar 

  • Ling X & Li F. (2004). Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. BioTechniques, 36:450–4, 456–60.

    PubMed  CAS  Google Scholar 

  • Liston P, Roy N, Tamai K, et al. (1996). Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature, 379:349–53.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Sun C, Olejniczak ET, et al. (2000). Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature, 408:1004–8.

    Article  PubMed  CAS  Google Scholar 

  • Maier JK, Lahoua Z, Gendron NH, et al. (2002). The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J Neurosci, 22:2035–43.

    PubMed  CAS  Google Scholar 

  • Martins LM, Iaccarino I, Tenev T, et al. (2002). The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem, 277:439–44.

    Article  PubMed  CAS  Google Scholar 

  • Martins LM, Turk BE, Cowling V, et al. (2003). Binding specificity and regulation of the serine protease and PDZ domains of HtrA2/Omi. J Biol Chem, 278:49417–27.

    Article  PubMed  CAS  Google Scholar 

  • Marusawa H, Matsuzawa S, Welsh K, et al. (2003). HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J, 22:2729–40.

    Article  PubMed  CAS  Google Scholar 

  • Miller LK. (1999). An exegesis of IAPs:salvation and surprises from BIR motifs. Trends Cell Biol, 9:323–8.

    Article  PubMed  CAS  Google Scholar 

  • Mirza A, McGuirk M, Hockenberry TN, et al. (2002). Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene, 21:2613–22.

    Article  PubMed  CAS  Google Scholar 

  • Muchmore SW, Chen J, Jakob C, et al. (2000). Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol Cell, 6:173–82.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor DS, Grossman D, Plescia J, et al. (2000). Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci USA, 97:13103–7.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor DS, Wall NR, Porter AC, et al. (2002). A p34(cdc2) survival checkpoint in cancer. Cancer Cell, 2:43–54.

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Suh WK, Jin J, et al. (2002). Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol, 22:3509–17.

    Article  PubMed  CAS  Google Scholar 

  • Olie RA, Simoes-Wust AP, Baumann B, et al. (2000). A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res, 60:2805–9.

    PubMed  CAS  Google Scholar 

  • Orth K & Dixit VM. (1997). Bik and Bak induce apoptosis downstream of CrmA but upstream of inhibitor of apoptosis. J Biol Chem, 272:8841–4.

    Article  PubMed  CAS  Google Scholar 

  • Pennati M, Binda M, Colella G, et al. (2003). Radiosensitization of human melanoma cells by ribozyme-mediated inhibition of survivin expression. J Invest Dermatol, 120:648–54.

    Article  PubMed  CAS  Google Scholar 

  • Pennati M, Binda M, Colella G, et al. (2004). Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene, 23:386–94.

    Article  PubMed  CAS  Google Scholar 

  • Pennati M, Colella G, Folini M, et al. (2002). Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to cisplatin-induced apoptosis. J Clin Invest, 109:285–6.

    Article  PubMed  CAS  Google Scholar 

  • Perrelet D, Ferri A, Liston P, et al. (2002). IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat Cell Biol, 4:175–9.

    Article  PubMed  CAS  Google Scholar 

  • Perrelet D, Ferri A, MacKenzie AE, et al. (2000). IAP family proteins delay motoneuron cell death in vivo. Eur J Neurosci, 12:2059–67.

    Article  PubMed  CAS  Google Scholar 

  • Pisarev V, Yu B, Salup R, et al. (2003). Full-length dominant-negative survivin for cancer immunotherapy. Clin Cancer Res, 9:6523–33.

    PubMed  CAS  Google Scholar 

  • Reker S, Meier A, Holten-Andersen L, et al. (2004). Identification of Novel Survivin-derived CTL Epitopes. Cancer Biol Ther, 3:173–179.

    PubMed  CAS  Google Scholar 

  • Richter BW, Mir SS, Eiben LJ, et al. (2001). Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family. Mol Cell Biol, 21:4292–301.

    Article  PubMed  CAS  Google Scholar 

  • Riedl SJ, Renatus M, Schwarzenbacher R, et al. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell, 104:791–800.

    Article  PubMed  CAS  Google Scholar 

  • Roberts DL, Merrison W, MacFarlane M, et al. (2001). The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity. J Cell Biol, 153:221–8.

    Article  PubMed  CAS  Google Scholar 

  • Rothe M, Pan MG, Henzel WJ, et al. (1995). The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell, 83:1243–52.

    Article  PubMed  CAS  Google Scholar 

  • Roy N, Deveraux QL, Takahashi R, et al. (1997). The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J, 16:6914–25.

    Article  PubMed  CAS  Google Scholar 

  • Roy N, Mahadevan MS, McLean M, et al. (1995). The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell, 80:167–78.

    Article  PubMed  CAS  Google Scholar 

  • Salvesen GS & Duckett CS. (2002). IAP proteins:blocking the road to death’s door. Nat Rev Mol Cell Biol, 3:401–10.

    Article  PubMed  CAS  Google Scholar 

  • Sanna MG, da Silva Correia J, Ducrey O, et al. (2002). IAP suppression of apoptosis involves distinct mechanisms:the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol, 22:1754–66.

    Article  PubMed  CAS  Google Scholar 

  • Sanna MG, Duckett CS, Richter BW, et al. (1998). Selective activation of JNK1 is necessary for the anti-apoptotic activity of hILP. Proc Natl Acad Sci USA, 95:6015–20.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Sheng Y, Kotsuji F, et al. (2000). Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res, 60:5659–66.

    PubMed  CAS  Google Scholar 

  • Schimmer AD, Welsh K, Pinilla C, et al. (2004). Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell, 5:25–35.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz M, Diestelkoetter P, Weigle B, et al. (2000). Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res, 60:4845–9.

    PubMed  CAS  Google Scholar 

  • Shen C, Buck A, Polat B, et al. (2003). Triplex-forming oligodeoxynucleotides targeting survivin inhibit proliferation and induce apoptosis of human lung carcinoma cells. Cancer Gene Ther, 10:403–10.

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki EN, Chai J, Rigotti DJ, et al. (2003). Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell, 11:519–27.

    Article  PubMed  CAS  Google Scholar 

  • Shu HB, Takeuchi M & Goeddel DV. (1996). The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA, 93:13973–8.

    Article  PubMed  CAS  Google Scholar 

  • Silke J, Ekert PG, Day CL, et al. (2001). Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J, 20:3114–23.

    Article  PubMed  CAS  Google Scholar 

  • Silke J, Hawkins CJ, Ekert PG, et al. (2002). The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3-and caspase 9-interacting sites. J Cell Biol, 157:115–24.

    Article  PubMed  CAS  Google Scholar 

  • Skoufias DA, Mollinari C, Lacroix FB, et al. (2000). Human survivin is a kinetochore-associated passenger protein. J Cell Biol, 151:1575–82.

    Article  PubMed  CAS  Google Scholar 

  • Song Z, Liu S, He H, et al. (2003a). A Single Amino Acid Change (Asp 53->Ala53) Converts Survivin from anti-apoptotic to pro-apoptotic. Mol Biol Cell, 15:1287–96.

    Article  PubMed  CAS  Google Scholar 

  • Song Z, Yao X and Wu M. (2003b). Direct interaction between survivin and Smac is essential for the anti-apoptotic activity of survivin during Taxol-induced apoptosis. J Biol Chem, 278:23130–40.

    Article  PubMed  CAS  Google Scholar 

  • Spiess C, Beil A & Ehrmann M. (1999). A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell, 97:339–47.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula SM, Datta P, Fan XJ, et al. (2000). Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem, 275:36152–7.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula SM, Gupta S, Datta P, et al. (2003). Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem, 278:31469–72.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula SM, Hegde R, Saleh A, et al. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 410:112–6.

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Cai M, Gunasekera AH, et al. (1999). NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature, 401:818–22.

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Cai M, Meadows RP, et al. (2000). NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem, 275:33777–81.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Hayashida M, Ito T, et al. (2000). Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16(INK4a) and Cdk2/cyclin E complex activation. Oncogene, 19:3225–34.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Imai Y, Nakayama H, et al. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell, 8:613–21.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Deveraux Q, Tamm I, et al. (1998). A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem, 273:7787–90.

    Article  PubMed  CAS  Google Scholar 

  • Tamm I, Trepel M, Cardo-Vila M, et al. (2003). Peptides targeting caspase inhibitors. J Biol Chem, 278:14401–5.

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Minemoto Y, Dibling B, et al. (2001). Inhibition of JNK activation through NF-kappaB target genes. Nature, 414:313–7.

    Article  PubMed  CAS  Google Scholar 

  • Tu SP, Jiang XH, Lin MC, et al. (2003). Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res, 63:7724–32.

    PubMed  CAS  Google Scholar 

  • Uren AG, Wong L, Pakusch M, et al. (2000). Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol, 10:1319–28.

    Article  PubMed  CAS  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ, et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415:530–6.

    Article  Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 111:241–50.

    Article  PubMed  Google Scholar 

  • van Loo G, van Gurp M, Depuydt B, et al. (2002). The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ, 9:20–6.

    Article  PubMed  Google Scholar 

  • Verdecia MA, Huang H, Dutil E, et al. (2000). Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol, 7:602–8.

    Article  PubMed  CAS  Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Verhagen AM, Silke J, Ekert PG, et al. (2002). HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem, 277:445–54.

    Article  PubMed  CAS  Google Scholar 

  • Vucic D, Deshayes K, Ackerly H, et al. (2002). SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J Biol Chem, 277:12275–9.

    Article  PubMed  CAS  Google Scholar 

  • Vucic D, Stennicke HR, Pisabarro MT, et al. (2000). ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol, 10:1359–66.

    Article  PubMed  CAS  Google Scholar 

  • Wall NR, O’Connor DS, Plescia J, et al. (2003). Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res, 63:230–5.

    PubMed  CAS  Google Scholar 

  • Williams NS, Gaynor RB, Scoggin S, et al. (2003). Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res, 9:931–46.

    PubMed  CAS  Google Scholar 

  • Wu G, Chai J, Suber TL, et al. (2000). Structural basis of IAP recognition by Smac/DIABLO. Nature, 408:1008–12.

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Apontes P, Song L, et al. (2004). AACR 95th Annual Meeting, Vol. 45. Research, A. A. f. C. (ed.). AACR: Orlando, Florida, pp 333.

    Google Scholar 

  • Wu TY, Wagner KW, Bursulaya B, et al. (2003). Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol, 10:759–67.

    Article  PubMed  CAS  Google Scholar 

  • Xia C, Xu Z, Yuan X, et al. (2002). Induction of apoptosis in mesothelioma cells by antisurvivin oligonucleotides. Mol Cancer Ther, 1:687–94.

    PubMed  CAS  Google Scholar 

  • Xu D, Bureau Y, McIntyre DC, et al. (1999). Attenuation of ischemia-induced cellular and behavioral deficits by X chromosome-linked inhibitor of apoptosis protein overexpression in the rat hippocampus. J Neurosci, 19:5026–33.

    PubMed  CAS  Google Scholar 

  • Xu DG, Crocker SJ, Doucet JP, et al. (1997). Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med, 3:997–1004.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Nagai S, Ninomiya-Tsuji J, et al. (1999). XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J, 18:179–87.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Manome Y, Nakamura M, et al. (2002). Downregulation of survivin expression by induction of the effector cell protease receptor-1 reduces tumor growth potential and results in an increased sensitivity to anticancer agents in human colon cancer. Eur J Cancer, 38:2316–24.

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Cao Z, Li F, et al. (2004). Survivin Promoter Controls Specific Gene Expression in Tumor Cells and its Promoter Activity is Further Enhanced by Hypoxia. Gene Therapy, in press.

    Google Scholar 

  • Yang L, Cao Z, Yan H, et al. (2003a). Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells:implication for cancer specific therapy. Cancer Res, 63:6815–24.

    PubMed  CAS  Google Scholar 

  • Yang L, Mashima T, Sato S, et al. (2003b). Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells:therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res, 63:831–7.

    PubMed  CAS  Google Scholar 

  • Yang QH, Church-Hajduk R, Ren J, et al. (2003c). Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev, 17:1487–96.

    Article  PubMed  CAS  Google Scholar 

  • Yang QH & Du C. (2004). Smac/DIABLO selectively reduces the levels of c-IAP1 and C-IAP2 but not that of XIAP and livin in HeLa cells. J Biol Chem.

    Google Scholar 

  • Younis T, Ramnath N, Ling X, et al. (2004). AACR 95th Annual Meeting, Vol. 45. Research, A. A. f. C. (ed.). AACR: Orlando, Florida, pp 697–698.

    Google Scholar 

  • Zhou M, Gu L, Li F, et al. (2002). DNA Damage Induces a Novel p53-Survivin Signaling Pathway Regulating Cell Cycle and Apoptosis in Acute Lymphoblastic Leukemia Cells. J Pharmacol Exp Ther, 303:124–31.

    Article  PubMed  CAS  Google Scholar 

  • Zhu ZB, Makhija SK, Lu B, et al. (2004). Transcriptional Targeting of Tumors with a Novel Tumor-Specific Survivin Promoter. Cancer Gene Ther, 11:256–62.

    Article  PubMed  CAS  Google Scholar 

  • Zumbrunn J & Trueb B. (1996). Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett, 398:187–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Li, F. (2005). Survivin, other IAPs, Smac/Diablo, and Omi/Htra2 — Modulation of the Advancing Apoptotic Process. In: Los, M., Gibson, S.B. (eds) Apoptotic Pathways as Targets for Novel Therapies in Cancer and Other Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-387-23695-3_6

Download citation

Publish with us

Policies and ethics