Skip to main content

Summary

We described the use of Bayesian decision theory in the design of a dose-individualization study. The particular application was treatment of leukemia with high-dose chemotherapy and stem-qell transplantation. Data were assumed already available from earlier phase II studies in which patients received a fixed high dose of chemotherapy. In one of the earlier studies, patients received a low, test dose of the drug, in addition to the same high-dose chemotherapy as in the other phase II study. We wanted to combine the historical information with inference about a patient’s own pharmacokinetics to help make more precise predictions of the patient’s AUC at various high doses, compared with using only the patient’s low-dose PK information. With the use of a simple, asymmetric loss function, we computed the expected loss for each possible dose and determined the dose that minimized the loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.S. Andersson, J. Gajewski, M. Donato, S. Giralt, V. Gian, J. Wingard, S. Tarantolo, H. Fernandez, W.W. Hu, K. Blume, A. Kashyap, S.J. Forman, and R.E. Champlin. Allogeneic stem cell transplantation (BMT) for AML and MDS following i.v. busulfan and cyclophosphamide (i.v. BuCy), Bone Marrow Transplantation 25: S35–38 (2000).

    Article  Google Scholar 

  2. B.S. Andersson, T. Madden, H.T. Tran, W.W. Hu, K.G. Blume, D.S. Chow, R.E. Champlin, and W.P. Vaughan. Acute safety and pharmacokinetics of intravenous busulfan when used with oral busulfan and cyclophosphamide as pretransplantation conditioning therapy: a phase I study. Biology of Blood & Marrow Transplantation 6:548–554 (2000).

    CAS  Google Scholar 

  3. B.S. Andersson, P.F. Thall, T. Madden, D. Couriel, X. Wang, H.T. Tran, P. Anderlini, M. de Lima, J. Gajewski, and R.E. Champlin. Busulfan systemic exposure relative to regimen-related toxicity and acute graft-versus-host disease: defining a therapeutic window for i.v. BuCy2 in chronic myelogenous leukemia. Biology of Blood & Marrow Transplantation 8:477–485 (2002).

    CAS  Google Scholar 

  4. R.W. Jelliffe. Clinical applications of pharmacokinetics and control theory: Planning, monitoring, and adjusting dosage regimens of aminoglycosides, lidocaine, digitoxic, and digoxin. In: R. Maronde (ed), Selected Topics in Clincal Pharmacology (ed), Springer Verlag, New York, 1986, pp. 26–82.

    Google Scholar 

  5. R.W. Jelliffe and A. Schumitzky. Modeling, adaptive control, and optimal drug therapy. Medical Progress Through Technology 16:95–110 (1990).

    CAS  PubMed  Google Scholar 

  6. R.W. Jelliffe, T. Iglesias, A.K. Hurst, K.A. Foo, and J. Rodriguez. Individualising gentamicin dosage regimens. A comparative review of selected models, data fitting methods, and monitoring strategies. Clincal Pharmacokinetic Concepts 21:461–478 (1991).

    CAS  Google Scholar 

  7. R.W. Jelliffe, A. Schumitzky, M.V. Guilder, M. Liu, L. Hu, P. Maire, P. Gomis, X. Barbaut, and B. Tahani. Individualizing drug dosage regimens: Roles of population pharmacokinetic and dynamic models, Bayesian fitting, and adaptive control. Therapeutic Drug Monitoring 15:380–393 (1993).

    CAS  PubMed  Google Scholar 

  8. D.Z. D’Argenio and J.H. Rodman. Targeting the systemic exposure of teniposide in the population and the individual using a stochastic therapeutic objective. Journal of Pharmacokinetics & Biopharmaceutics 21:223–251 (1993).

    CAS  Google Scholar 

  9. M. Sandstrom, M.O. Karlsson, P. Ljungman, Z. Hassan, E.N. Jonsson, C. Nilsson, O. Ringden, G. Oberg, A. Bekassy, and M. Hassan. Population pharmacokinetic analysis resulting in a tool for dose individualization of busulphan in bone marrow transplantation recipients. Bone Marrow Transplantation 28:657–664 (2001).

    CAS  PubMed  Google Scholar 

  10. B.D. Kahan, M. Welsh, L. Rutzky, R. Lewis, R. Knight, S. Katz, K. Napoli, J. Grevel, and C.T. Van Buren. The ability of pretransplant test-dose pharmacokinetic profiles to reduce early adverse events after renal transplantation. Transplantation 53:345–351 (1992).

    CAS  PubMed  Google Scholar 

  11. S.B. Duffull, C.M. Kirkpatrick, and E.J. Begg. Comparison of two Bayesian approaches to dose-individualization for once-daily aminoglycoside regimens. British Journal of Clinical Pharmacology 43:125–135 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. J. Wakefield. Bayesian individualization via sampling-based methods. Journal of Pharmacokinetics & Biopharmaceutics 24:103–131 (1996).

    CAS  Google Scholar 

  13. A. Racine-Poon and J. Wakefield. Statistical methods for population pharmacokinetic modelling. Statistical Methods in Medical Research 7:63–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. R. Weinshilboum. Inheritance and drug response. [comment]. New England Journal of Medicine 348:529–537 (2003).

    Article  PubMed  Google Scholar 

  15. W.E. Evans and H.L. McLeod. Pharmacogenomics-drug disposition, drug targets, and side effects. [comment]. New England Journal of Medicine 348:538–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. T.S. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics 1:209–230 (1973).

    Google Scholar 

  17. C.E. Antoniak. Mixtures of Dirichlet processes with applications to nonparametric problems. Annals of Statistics 2:1152–1174 (1974).

    Google Scholar 

  18. G.L. Rosner and P. Müler. Bayesian population pharmacokinetic and pharmacodynamic analyses using mixture models. Journal of Pharmacokinetics & Biopharmaceutics 25:209–33 (1997).

    CAS  Google Scholar 

  19. P. Müler and G. L. Rosner. A Bayesian population model with hierarchical mixture priors applied to blood count data. Journal of the American Statistical Association 92:1279–1292 (1997).

    Google Scholar 

  20. W.P. Vaughan, D. Carey, S. Perry, A.O. Westfall, and D.E. Salzman. A limited samplingstrategy for pharmacokinetic directed therapy with intravenous busulfan. Biology of Blood & Marrow Transplantation 8:619–624 (2002).

    CAS  Google Scholar 

  21. D. Dey, P. Müler, and D. Sinha. Practical Nonparametric and Semiparametric Bayesian Statistics, Springer-Verlag, New York, New York, 1998.

    Google Scholar 

  22. S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. Posterior Consistency of Dirichlet Mixtures in Density Estimation. The Annals of Statistics 27:143–158 (1999).

    Google Scholar 

  23. J. Wakefield and N. Rahman. The combination of population pharmacokinetic studies. Biometrics 56:263–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. G. Tomlinson and M. Escobar. Analysis of Densities, Technical Report, University of Toronto, 1999.

    Google Scholar 

  25. A. Kottas and A.E. Gelfand. Bayesian Semiparametric Median Regression Modeling. Journal of the American Statistical Association 96:1458–1468 (2001).

    Article  Google Scholar 

  26. H.F. Lopes, P. Müler, and G.L. Rosner. Bayesian Meta-Analysis for Longitudinal Data Models Using Multivariate Mixture Priors. Biometrics 59:66–75 (2003).

    Article  PubMed  Google Scholar 

  27. S.N. MacEachern. Dependent Nonparametric Processes, ASA Proceedings of the Section on Bayesian Statistical Science, American Statistical Association, Alexandria, Virginia, 1999.

    Google Scholar 

  28. M. de Iorio, P. Müler, G.L. Rosner, and S.N. MacEachern. An ANOVA Model for Dependent Random Measures. Journal of the American Statistical Association (to appear).

    Google Scholar 

  29. P. Müler, G.L. Rosner, M. de Iorio, and S.N. MacEachern. ANOVA Mixture Models for Nonparametric Bayesian Inference Over Related Studies, Technical Report, Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, 2002.

    Google Scholar 

  30. S.N. MacEachern and P. Müler. Estimating Mixture of Dirichlet Process Models. Journal of Computational and Graphical Statistics 7:223–239 (1998).

    Google Scholar 

  31. M.H. DeGroot. Optimal Statistical Decisions, McGraw-Hill, Inc., New York, New York, 1970.

    Google Scholar 

  32. J.O. Berger. Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York, New York, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Rosner, G.L., Müller, P., Tang, F., Madden, T., Andersson, B.S. (2004). Dose Individualization for High-dose anti-cancer Chemotherapy. In: D’Argenio, D.Z. (eds) Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis Volume 3. The International Series in Engineering and Computer Science, vol 765. Springer, Boston, MA. https://doi.org/10.1007/0-306-48523-0_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48523-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7804-0

  • Online ISBN: 978-0-306-48523-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics