Skip to main content

Mixed Integer Nonlinear Programming

MINLP

  • Reference work entry
Encyclopedia of Optimization

A wide range of nonlinear optimization problems involve integer or discrete variables in addition to the continuous variables. These classes of optimization problems arise from a variety of applications and are denoted as mixed integer nonlinear programming MINLP problems.

The integer variables can be used to model, for instance, sequences of events, alternative candidates, existence or non-existence of units (in their zero-one representation), while discrete variables can model, for instance, different equipment sizes. The continuous variables are used to model the input-output and interaction relationships among individual units/operations and different interconnected systems.

The nonlinear nature of these mixed integer optimization problems may arise from:

  • nonlinear relations in the integer domain exclusively (e.g., products of binary variables in the quadratic assignment model);

  • nonlinear relations in the continuous domain only (e.g., complex nonlinear input-output model in a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acevedo, J., and Pistikopoulos, E. N.: ‘A parametric MINLP algorithm for process synthesis problems under uncertainty’, I-EC Res.35, no. 1 (1996), 147–158.

    Google Scholar 

  2. Adjiman, C. S., Androulakis, I. P., and Floudas, C. A.: ‘Global optimization of MINLP problems in process synthesis and design’, Computers Chem. Engin. Suppl.21 (1997), S445–S450.

    Google Scholar 

  3. Adjiman, C. S., Androulakis, I. P., and Floudas, C. A.: ‘A global optimization method, αBB, for general twice-differentiable NLPs–II. Implementation and computational results’, Computers Chem. Engin.22 no. 9 (1998), 1159–1179.

    Google Scholar 

  4. Adjiman, C. S., Androulakis, I. P., and Floudas, C. A.: ‘Global optimization of mixed-integer nonlinear problems’, AIChE J.46 (2000), 1769–1797.

    Google Scholar 

  5. Adjiman, C. S., Dallwig, S., Floudas, C. A., and Neumaier, A.: ‘A global optimization method, αBB, for general twice-differentiable NLPs–I. Theoretical advances’, Computers Chem. Engin.22 no. 9 (1998),. 1137–1158

    Google Scholar 

  6. Adjiman, C. S., and Floudas, C. A.: ‘Rigorous convex underestimators for general twice-differentiable problems’, J. Global Optim.9 (1996), 23–40.

    MathSciNet  MATH  Google Scholar 

  7. Adjiman, C. S., Schweiger, C. A., and Floudas, C. A.: ‘Mixed-integer nonlinear optimization in process synthesis’, in D.-Z Du, and P. M. Pardalos (eds.): Handbook Combinatorial Optim., Kluwer Acad. Publ., 1998.

    Google Scholar 

  8. Aggarwal, A., and Floudas, C. A.: ‘Synthesis of general distillation sequences–Nonsharp separations’, Computers Chem. Engin.14 no. 6 (1990), 631.

    Google Scholar 

  9. Aggarwal, A., and Floudas, C. A.: ‘Synthesis of heat integrated nonsharp distillation sequences’, Computers Chem. Engin.16 (1992), 89.

    Google Scholar 

  10. Al-Khayyal, F. A.: ‘Jointly constrained bilinear programs and related problems: An overview’, Comput. Math. Appl.19 (1990), 53.

    MathSciNet  MATH  Google Scholar 

  11. Allgor, R. I., and Barton, P. I.: ‘Mixed integer dynamic optimization’, Computers Chem. Engin.21 (1997), S451–S456.

    Google Scholar 

  12. Androulakis, I. P., Maranas, C. D., and Floudas, C. A.: ‘αBB: A global optimization method for general constrained nonconvex problems’, J. Global Optim.7 (1995), 337–363.

    MathSciNet  MATH  Google Scholar 

  13. Barbosa-Povoa, A. P., Macchietto, S.: ‘Detailed design of multipurpose batch plants’, Computers Chem. Engin.18, no. 11–12 (1994), 1013–1042.

    Google Scholar 

  14. Barton, P. I., Allgor, R. J., and Feehery, W. F.: ‘Dynamic optimization in a discontinuous world’, I-EC Res.37, no. 3 (1998), 966–981.

    Google Scholar 

  15. Beale, E. M.L.: ‘Integer programming’, The State of the Art in Numerical Analysis, Acad. Press 1977, pp. 409–448.

    Google Scholar 

  16. Bertsekas, D. L., Lower, G. S., Sandell, N. R., and Posbergh, T. A.: ‘Optimal short term scheduling of large-scale power systems’, IEEE Trans. Autom. ControlAC-28 (1983), 1.

    Google Scholar 

  17. Birewar, D. B., and Grossmann, I. E.: ‘Incorporating scheduling in the optimal design of multiproduct batch plants’, Computers Chem. Engin.13 (1989), 141–161.

    Google Scholar 

  18. Birewar, D. B., and Grossmann, I. E.: ‘Simultaneous synthesis, sizing and scheduling of multiproduct batch plants’, Computers Chem. Engin.29 no. 11 (1990), 2242.

    Google Scholar 

  19. Bloom, J. A.: ‘Solving an electricity generating capacity expansion planning problem by generalized benders’ decomposition’, Oper. Res.31 no. 5 (1983), 84.

    MathSciNet  MATH  Google Scholar 

  20. Borchers, B., and Mitchell, J. E.: ‘An improved branch and bound algorithm for mixed integer nonlinear programs’, Techn. Report Renssellaer Polytechnic Inst. no. 200 (1991).

    Google Scholar 

  21. Camarda, K. V., and Maranas, C. D.: ‘Optimization in polymer design using connectivity indices’, I-EC Res.38 (1999), 1884–1892.

    Google Scholar 

  22. Churi, N., and Achenie, L. E.K.: ‘Novel mathematical programming model for computer aided molecular design’, Industr. Engin. Chem. Res.35, no. 10 (1996), 3788–3794.

    Google Scholar 

  23. Churi, N., and Achenie, L. E.K.: ‘The optimal design of refrigerant mixtures for a two-evaporator refrigeration system’, Computers Chem. Engin.21, no. 13 (1997), 349–354.

    Google Scholar 

  24. Ciric, A. R., and Floudas, C. A.: ‘A retrofit approach of heat exchanger networks’, Computers Chem. Engin.13 no. 6 (1989), 703.

    Google Scholar 

  25. Ciric, A. R., and Floudas, C. A.: ‘A mixed-integer nonlinear programming model for retrofitting heat exchanger networks’, I-EC Res.29 (1990), 239.

    Google Scholar 

  26. Ciric, A. R., and Gu, D. Y.: ‘Synthesis of nonequilibrium reactive distillation processes by MINLP optimization’, AIChE J.40, no. 9 (1994), 1479–1487.

    Google Scholar 

  27. Ciric, A. R., and Huchette, S. G.: ‘Multiobjective optimization approach to sensitivity analysis waste treatment costs in discrete process synthesis and optimization problems’, I-EC Res.32, no. 11 (1993), 2636–2646.

    Google Scholar 

  28. Daichendt, M. M., and Grossmann, I. E.: ‘Preliminary screening for the MINLP synthesis of process systems: I. Aggregation techniques’, Computers Chem. Engin.18 (1994), 663.

    Google Scholar 

  29. Daichendt, M. M., and Grossmann, I. E.: ‘Preliminary screening for the MINLP synthesis of process systems: II. Heat exchanger networks’, Computers Chem. Engin.18 (1994), 679.

    Google Scholar 

  30. Dean, J. P., and Dervakos, G. A.: ‘Design of process-compatible biological agents’, Computers Chem. Engin. Suppl. A20 (1996), S67–S72.

    Google Scholar 

  31. Dimitriadis, V. D., and Pistikopoulos, E. N.: ‘Flexibility analysis of dynamic systems’, I-EC Res.34, no. 12 (1995), 4451–4462.

    Google Scholar 

  32. Dorneigh, M. C., and Sahinidis, N. V.: ‘Global optimization algorithms for chip layout and compaction’, Engin. Optim.25, no. 2 (1995), 131–154.

    Google Scholar 

  33. Dua, V., and Pistikopoulos, E. N.: ‘Optimization techniques for process synthesis and material design under uncertainty’, Chem. Engin. Res. Des.76, no. A3 (1998), 408–416.

    Google Scholar 

  34. Duran, M. A., and Grossmann, I. E.: ‘An outer approximation algorithm for a class of mixed-integer nonlinear programs’, Math. Program.36 (1986), 307.

    MathSciNet  MATH  Google Scholar 

  35. Duvedi, A., and Achenie, L. E.K.: ‘On the design of environmentally benign refrigerant mixtures: A Mathematical Programming Approach’, Computers Chem. Engin.21, no. 8 (1997), 915–923.

    Google Scholar 

  36. Faqir, N. M., and Karimi, I. A.: ‘Design of multipurpose batch plants with multiple production routes’, Proc. FOCAPD ’89, Snowmass, Colorado, (1990), p. 451.

    Google Scholar 

  37. Fletcher, R., Hall, J. A.J., and Johns, W. R.: ‘Flexible retrofit design of multiproduct batch plants’, Computers Chem. Engin.15 no. 12 (1991), 843.

    Google Scholar 

  38. Fletcher, R., and Leyffer, S.: ‘Solving mixed integer nonlinear programs by outer approximation’, Math. Program.66, no. 3 (1994), 327–349.

    MathSciNet  Google Scholar 

  39. Fletcher, R., and Leyffer, S.: ‘Numerical experience with lower bounds for MIQP branch and bound’, SIAM J. Optim.8, no. 2 (1998), 604–616.

    MathSciNet  MATH  Google Scholar 

  40. Floudas, C. A.: Nonlinear and mixed integer optimization: Fundamentals and applications, Oxford Univ. Press 1995.

    Google Scholar 

  41. Floudas, C. A.: Deterministic global optimization: Theory, methods and applications, Nonconvex Optim. Appl. Kluwer Acad. Publ., 2000.

    Google Scholar 

  42. Floudas, C. A., Aggarwal, A., and Ciric, A. R.: ‘Global optimum search for nonconvex NLP and MINLP problems’, Computers Chem. Engin.13, no. 10 (1989), 1117–1132.

    Google Scholar 

  43. Floudas, C. A., and Ciric, A. R.: ‘Strategies for overcoming uncertainties in heat exchanger network synthesis’, Computers Chem. Engin.13 no. 10 (1989), 1133.

    Google Scholar 

  44. Floudas, C. A., and Grossmann, I. E.: ‘Algorithmic approaches to process synthesis: logic and global optimization’, FOCAPD’94, Vol. 91 of AIChE Symp. Ser., 1995, pp. 198–221.

    Google Scholar 

  45. Ganish, B., Horsky, D., and Srikanth, K.: ‘An approach to optimal positioning of a new product’, Managem. Sci.29 (1983), 1277.

    Google Scholar 

  46. Geoffrion, A. M.: ‘Generalized Benders decomposition’, J. Optim. Th. Appl.10 (1972), 237–260.

    MathSciNet  MATH  Google Scholar 

  47. Georgiadis, M. C., Rotstein, G. E., and Macchietto, S.: ‘Optimal layout design in multipurpose batch plants’, Industr. Engin. Chem. Res.36, no. 11 (1997), 4852–4863.

    Google Scholar 

  48. Geromel, J. C., and Belloni, M. R.: ‘Nonlinear programs with complicating variables: theoretical analysis and numerical experience’, IEEE Trans. Syst., Man Cybern.SMC-16 (1986), 231.

    MathSciNet  Google Scholar 

  49. Grossmann, I. E.: ‘MINLP optimization strategies and algorithms for process synthesis’, Proc. 3rd. Internat. Conf. on Foundations of Computer-Aided Process Design, (1990), p. 105.

    Google Scholar 

  50. Grossmann, I. E.: ‘Mixed integer optimization techniques for algorithmic process synthesis’, in J. L. Anderson (ed.): Advances In Chemical Engineering, Process Synthesis, 23 Acad. Press, 1996, pp. 171–246.

    Google Scholar 

  51. Grossmann, I. E., and Floudas, C. A.: ‘Active constraint strategy for flexibility analysis in chemical processes’, Computers Chem. Engin.11 no. 6 (1987), 675.

    Google Scholar 

  52. Grossmann, I. E., Quesada, I., Ramon, R., and Voudouris, V. T.: ‘Mixed-integer optimization techniques for the design and scheduling of batch processes’, Proc. NATO Advanced Study Inst. Batch Process Systems Engineering, 1992.

    Google Scholar 

  53. Grossmann, I. E., and Sargent, R. W.H.: ‘Optimal design of multipurpose chemical plants’, Industr. Engin. Chem. Process Des. Developm.18 (1979), 343.

    Google Scholar 

  54. Gupta, A., and Manousiouthakis, V.: ‘Minimum utility cost of mass exchange networks with variable single component supplies and targets’, I-EC Res.32, no. 9 (1993), 1937–1950.

    Google Scholar 

  55. Gupta, O. K.: ‘Branch and bound experiments in nonlinear integer programming’, PhD Thesis Purdue Univ. (1980).

    Google Scholar 

  56. Gupta, O. K., and Ravindran, R.: ‘Branch and bound experiments in convex nonlinear integer programming’, Managem. Sci.31, no. 12 (1985), 1533–1546.

    MathSciNet  MATH  Google Scholar 

  57. Harding, S. T., and Floudas, C. A.: ‘Global optimization in multiproduct and multipurpose batch design under uncertainty’, Industr. Engin. Chem. Res.36, no. 5 (1997), 1644–1664.

    Google Scholar 

  58. Hatzimanikatis, V., Floudas, C. A., and Bailey, J. E.: ‘Analysis and design of metabolic reaction networks via mixed-integer linear optimization’, AIChE J.42, no. 5 (1996), 1277–1292.

    Google Scholar 

  59. Hatzimanikatis, V., Floudas, C. A., and Bailey, J. E.: ‘Optimization of regulatory architectures in metabolic reaction networks’, Biotechnol. and Bioengin.52 (1996), 485–500.

    Google Scholar 

  60. Hoang, H. H.: ‘Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition’, IEEE Trans. Autom. ControlAC-27 (1982), 164.

    Google Scholar 

  61. Holmberg, K.: ‘On the convergence of the cross decomposition’, Math. Program.47 (1990), 269.

    MathSciNet  MATH  Google Scholar 

  62. Ierapetritou, M. G., and Pistikopoulos, E. N.: ‘Simultaneous incorporation of flexibility and economic risk in operational planning under uncertainty’, Computers Chem. Engin.18, no. 3 (1994), 163–189.

    Google Scholar 

  63. Ierapetritou, M. G., and Pistikopoulos, E. N.: ‘Batch plant design and operations under uncertainty’, Industr. Engin. Chem. Res.35, no. 2 (1996), 772–787.

    Google Scholar 

  64. Ierapetritou, M. G., Pistikopoulos, E. N., and Floudas, C. A.: ‘Operational planning under uncertainty’, Computers Chem. Engin.20, no. 12 (1996), 1499–1516.

    Google Scholar 

  65. Kalitventzeff, B., and Marechal, F.: ‘The management of a utility network’, Process Systems Engineering. PSE ’88, Sydney, Australia, 1988 p. 223.

    Google Scholar 

  66. Kelley, J. E.: ‘The cutting plane method for solving convex programs’, J. SIAM8, no. 4 (1960), 703–712.

    MathSciNet  Google Scholar 

  67. Kocis, G. R., and Grossmann, I. E.: ‘Relaxation strategy for the structural optimization of process flow sheets’, I-EC Res.26 no. 9 (1987), 1869.

    Google Scholar 

  68. Kocis, G. R., and Grossmann, I. E.: ‘Global optimization of nonconvex MINLP problems in process synthesis’, I-EC Res.27 no. 8 (1988), 1407.

    Google Scholar 

  69. Kocis, G. R., and Grossmann, I. E.: ‘Computational experience with DICOPT solving MINLP problems in process systems engineering’, Computers Chem. Engin.13 (1989), 307.

    Google Scholar 

  70. Kocis, G. R., and Grossmann, I. E.: ‘A modelling and decomposition strategy for the MINLP optimization of process flowsheets’, Computers Chem. Engin.13, no. 7 (1989), 797–819.

    Google Scholar 

  71. Kokossis, A. C., and Floudas, C. A.: ‘Optimization of complex reactor networks-I. isothermal operation’, Chem. Engin. Sci.45 no. 3 (1990), 595.

    Google Scholar 

  72. Kokossis, A. C., and Floudas, C. A.: ‘Optimal synthesis of isothermal reactor-separator-recycle systems’, Chem. Engin. Sci.46 (1991), 1361.

    Google Scholar 

  73. Kokossis, A. C., and Floudas, C. A.: ‘Optimization of complex reactor networks-II. Nonisothermal operation’, Chem. Engin. Sci.49 no. 7 (1994), 1037.

    Google Scholar 

  74. Kokossis, A. C., and Floudas, C. A.: ‘Stability in optimal design: Synthesis of complex reactor networks’, AIChE40 no. 5 (1994), 849–861.

    Google Scholar 

  75. Kravanja, Z., and Grossmann, I. E.: ‘PROSYN-An {MINLP} process synthesizer’, Computers Chem. Engin.14 (1990), 1363.

    Google Scholar 

  76. Kravanja, Z., and Grossmann, I. E.: ‘A computational approach for the modeling/decomposition strategy in the MINLP optimization of process flowsheets with implicit models’, I-EC Res.35, no. 6 (1996), 2065–2070.

    Google Scholar 

  77. Liu, M. L., and Sahinidis, N. V.: ‘Process planning in a fuzzy environment’, Europ. J. Oper. Res.100, no. 1 (1997), 142–169.

    MATH  Google Scholar 

  78. Luyben, M. L., and Floudas, C. A.: ‘Analyzing the interaction of design and control, Part 1: A multiobjective framework and application to binary distillation synthesis’, Computers Chem. Engin.18 no. 10 (1994), 933–969.

    Google Scholar 

  79. Luyben, M. L., and Floudas, C. A.: ‘Analyzing the interaction of design and control, Part 2: Reactor–separator–recycle system’, Computers Chem. Engin.18 no. 10 (1994), 971–994.

    Google Scholar 

  80. Maranas, C. D.: ‘Optimal computer-aided molecular design: A polymer design case study’, Industr. Engin. Chem. Res.35, no. 10 (1996), 3403–3414.

    Google Scholar 

  81. Maranas, C. D.: ‘Optimal molecular design under property prediction uncertainty’, AIChE J.43, no. 5 (1997), 1250–1264.

    Google Scholar 

  82. Mawengkang, H., and Murtagh, B. A.: ‘Solving nonlinear integer programs with large scale optimization software’, Ann. Oper. Res.5 (1986), 425.

    MathSciNet  Google Scholar 

  83. McCormick, G. P.: ‘Computability of global solutions to factorable nonconvex programs: Part I–Convex underestimating problems’, Math. Program.10 (1976), 147–175.

    MathSciNet  MATH  Google Scholar 

  84. Mockus, L., and Reklaitis, G. V.: ‘A new global optimization algorithm for batch process scheduling’, in C. A. Floudas, and P. M. Pardalos (eds.): State of the Art In Global Optimization, Kluwer Acad. Publ. 1996, pp. 521–538.

    Google Scholar 

  85. Mohideen, M. J., Perkins, J. D., and Pistikopoulos, E. N.: ‘Optimal design of dynamic systems under uncertainty’, AIChE J.42, no.8 (1996), 2251–2272.

    Google Scholar 

  86. Mohideen, M. J., Perkins, J. D., and Pistikopoulos, E. N.: ‘Robust stability considerations in optimal design of dynamic systems under uncertainty’, J. Process Control7, no. 5 (1997), 371–385.

    Google Scholar 

  87. Moore, R. E.: Methods and applications of interval analysis, SIAM 1979.

    Google Scholar 

  88. Nemhauser, G. L., and Wolsey, L. A.: Integer and combinatorial optimization, Interscience Ser. Discrete Math. and Optim., Wiley 1988.

    Google Scholar 

  89. Neumaier, A.: Interval methods for systems of equations, Encycl. Math. Appl., Cambridge Univ. Press 1990.

    Google Scholar 

  90. Novak, Z., Kravanja, Z., and Grossmann, I. E.: ‘Simultaneous synthesis of distillation sequences in overall process schemes using an improved MINLP approach’, Computers Chem. Engin.20, no. 12 (1996), 1425–1440.

    Google Scholar 

  91. Odele, O., and Macchietto, S.: ‘Computer aided molecular design: A novel method for optimal solvent selection’, Fluid Phase Equilib.82 (1993), 47.

    Google Scholar 

  92. Ostrovsky, G. M., Ostrovsky, M. G., and Mikhailow, G. W.: ‘Discrete optimization of chemical processes’, Computers Chem. Engin.14 (1990), 111–117.

    Google Scholar 

  93. Papageorgaki, S., and Reklaitis, G. V.: ‘Optimal design of multipurpose batch plants: 1. Problem formulation’, I-EC Res.29 no. 10 (1990), 2054.

    Google Scholar 

  94. Papageorgaki, S., and Reklaitis, G. V.: ‘Optimal design of multipurpose batch plants: 2. A decomposition solution strategy’, I-EC Res.29 no. 10 (1990), 2062.

    Google Scholar 

  95. Papalexandri, K. P., and Pistikopoulos, E. N.: ‘An MINLP retrofit approach for improving the flexibility of heat exchanger networks’, Ann. Oper. Res.42 (1993), 119.

    MATH  Google Scholar 

  96. Papalexandri, K. P., and Pistikopoulos, E. N.: ‘Synthesis and retrofit design of operable heat exchanger networks: 1. Flexibility and structural controllability aspects’, I-EC Res.33 (1994), 1718.

    Google Scholar 

  97. Papalexandri, K. P., and Pistikopoulos, E. N.: ‘Synthesis and retrofit design of operable heat exchanger networks: 2. Dynamics and control structure considerations’, I-EC Res.33 (1994), 1738.

    Google Scholar 

  98. Papalexandri, K. P., and Pistikopoulos, E. N.: ‘Generalized modular representation framework for process synthesis’, AIChE J.42 (1996), 1010.

    Google Scholar 

  99. Papalexandri, K. P., Pistikopoulos, E. N., and Floudas, C. A.: ‘Mass exchange networks for waste minimization: A simultaneous approach’, Chem. Engin. Res. Developm.72 (1994), 279.

    Google Scholar 

  100. Pardalos, P. M., and Schnitger, G.: ‘Checking local optimality in constrained quadratic programming is NP-Hard’, Oper. Res. Lett.7 no. 1 (1988), 33.

    MathSciNet  MATH  Google Scholar 

  101. Pardalos, P. M., and Vavasis, S. A.: ‘Quadratic programming with one negative eigenvalue is NP-hard’, J. Global Optim.1 (1991), 15.

    MathSciNet  MATH  Google Scholar 

  102. Paules IV, G. E., and Floudas, C. A.: ‘Synthesis of flexible distillation sequences for multiperiod operation’, Computers Chem. Engin.12 no. 4 (1988), 267.

    Google Scholar 

  103. Paules IV, G. E., and Floudas, C. A.: ‘APROS: Algorithmic development methodology for discrete-continuous optimization problems’, Oper. Res.37 no. 6 (1989), 902.

    MATH  Google Scholar 

  104. Paules IV, G. E., and Floudas, C. A.: ‘Stochastic programming in process synthesis: A two-stage model with MINLP recourse for multiperiod heat-integrated distillation sequences’, Computers Chem. Engin.16 no. 3 (1992), 189.

    Google Scholar 

  105. Penteado, F. D., and Ciric, A. R.: ‘An MINLP approach for safe process plant layout’, I-EC Res.35, no. 4 (1996), 1354–1361.

    Google Scholar 

  106. Petkov, S. B., and Maranas, C. D.: ‘Multiperiod planning and scheduling of multiproduct batch plants under demand uncertainty’, I-EC Res.36, no. 11 (1997), 4864–4881.

    Google Scholar 

  107. Petkov, S. B., and Maranas, C. D.: ‘Quantitative assessment of uncertainty in the optimization of metabolic pathways’, Biotechnol. and Bioengin.56, no. 2 (1997), 145–161.

    Google Scholar 

  108. Petkov, S. B., and Maranas, C. D.: ‘Design of single product campaign batch plants under demand uncertainty’, AIChE J.44, no. 4 (1998), 896–911.

    Google Scholar 

  109. Pistikopoulos, E. N., and Ierapetritou, M. G.: ‘Novel approach for optimal process design under uncertainty’, Computers Chem. Engin.19, no. 10 (1995), 1089–1110.

    Google Scholar 

  110. Quesada, I., and Grossmann, I. E.: ‘An LP/NLP based branch and bound algorithm for convex MINLP optimization problems’, Computers Chem. Engin.16 (1992), 937–947.

    Google Scholar 

  111. Raman, V. S., and Maranas, C. D.: ‘Optimization in product design with properties correlated with topological indices’, Computers Chem. Engin.45 (1999), 997–1017.

    Google Scholar 

  112. Ratschek, H., and Rokne, J.: Computer methods for the range of functions, Ellis Horwood Ser. Math. Appl., Halsted Press, 1984.

    Google Scholar 

  113. Reklaitis, G. V.: ‘Perspectives on scheduling and planning process operations’, Proc. 4th. Internat. Symp. on Process Systems Engineering, Montreal, Canada, 1991.

    Google Scholar 

  114. Rouhani, R., Lasdon, L., Lebow, W., and Warren, A. D.: ‘A generalized Benders decomposition approach to reactive source planning in power systems’, Math. Program. Stud.25 (1985), 62.

    MATH  Google Scholar 

  115. Ryoo, H. S., and Sahinidis, N. V.: ‘Global optimization of nonconvex NLPs and MINLPs with applications in process design’, Computers Chem. Engin.19, no. 5 (1995), 551–566.

    Google Scholar 

  116. Sahinidis, N. V., and Grossmann, I. E.: ‘Convergence properties of generalized Benders decomposition’, Computers Chem. Engin.15 no. 7 (1991), 481.

    Google Scholar 

  117. Schweiger, C. A., and Floudas, C. A.: ‘MINOPT: A software package for mixed-integer nonlinear optimization, user’s guide’, Manual Computer-Aided Systems Lab. Dept. Chemical Engin. Princeton Univ. (1997).

    Google Scholar 

  118. Schweiger, C. A., and Floudas, C. A.: ‘Interaction of design and control: optimization with dynamic models’, in W. W. Hager, and P. M. Pardalos (eds.): Optimal Control: Theory, Algorithms, and Applications, Kluwer Acad. Publ., 1998, pp. 388–435.

    Google Scholar 

  119. Schweiger, C. A., and Floudas, C. A.: ‘Optimization framework for the synthesis of complex reactor networks’, I-EC Res.38 (1999), 744–766.

    Google Scholar 

  120. Skrifvars, H., Harjunkoski, I., Westerlund, T., Kravanja, Z., and Pörn, R.: ‘Comparison of different MINLP methods applied on certain chemical engineering problems’, Computers Chem. Engin. Suppl.20 (1996), S333–S338.

    Google Scholar 

  121. Smith, E. M.B., and Pantelides, C. C.: ‘Global optimisation of general process models’, in I. E. Grossmann (ed.): Global Optimization in Engineering Design, Kluwer Acad. Publ., 1996, pp. 355–386.

    Google Scholar 

  122. Smith, E. M.B., and Pantelides, C. C.: ‘A symbolic reformulation/spatial branch and bound algorithm for the global optimization of nonconvex MINLPs’, Computers Chem. Engin.23 (1999), 457–478.

    Google Scholar 

  123. Stefanis, S. K., Livingston, A. G., and Pistikopoulos, E. N.: ‘Environmental impact considerations in the optimal design and scheduling of batch processes’, Computers Chem. Engin.21, no. 10 (1997), 1073–1094.

    Google Scholar 

  124. Turkay, M., and Grossmann, I. E.: ‘Logic-based MINLP algorithms for the optimal synthesis of process networks’, Computers Chem. Engin.20, no. 8 (1996), 959–978.

    Google Scholar 

  125. Vaidyanathan, R., and El-Halwagi, M.: ‘Global optimization of nonconvex MINLP’s by interval analysis’, in I. E. Grossmann (ed.): Global Optimization in Engineering Design, Kluwer Acad. Publ., 1996, pp. 175–193.

    Google Scholar 

  126. Vaidyaraman, S., and Maranas, C. D.: ‘Optimal synthesis of refrigation cycles and selection of refrigerants’, AIChE J.45 (1999), 997–1017.

    Google Scholar 

  127. Vaselenak, J., Grossmann, I. E., and Westerberg, A. W.: ‘An embedding formulation for the optimal scheduling and design of multiproduct batch plants’, I-EC Res.26 no. 1 (1987), 139.

    Google Scholar 

  128. Vaselenak, J., Grossmann, I. E., and Westerberg, A. W.: ‘Optimal retrofit design of multipurpose batch plants’, I-EC Res.26 no. 4 (1987), 718.

    Google Scholar 

  129. Vavasis, S.: Nonlinear optimization: Complexity issues, Oxford Univ. Press 1991.

    Google Scholar 

  130. Vecchietti, A., and Grossmann, I. E.: ‘LOGMIP: A disjunctive 0-1 nonlinear optimizer for process system models’, Computers Chem. Engin.23 (1999), 555–565.

    Google Scholar 

  131. Viswanathan, J., and Grossmann, I. E.: ‘A combined penalty function and outer-approximation for MINLP optimization’, Computers Chem. Engin.14, no. 7 (1990), 769–782.

    Google Scholar 

  132. Wellons, M. C., and Reklaitis, G. V.: ‘Scheduling of multipurpose batch chemical plants: 1. Formulation of single-product campaigns’, I-EC Res.30 no. 4 (1991), 671.

    Google Scholar 

  133. Wellons, M. C., and Reklaitis, G. V.: ‘Scheduling of multipurpose batch chemical plants: 1. Multiple product campaign formulation and production planning’, I-EC Res.30 no. 4 (1991), 688.

    Google Scholar 

  134. Westerlund, T., and Pettersson, F.: ‘An extended cutting plane method for solving convex MINLP problems’, Computers Chem. Engin.19 (1995), 131–136.

    Google Scholar 

  135. Westerlund, T., Pettersson, F., and Grossmann, I. E.: ‘Optimization of pump configuration problems as a MINLP problem’, Computers Chem. Engin.18, no. 9 (1994), 845–858.

    Google Scholar 

  136. Westerlund, T., Skrifvars, H., Harjunkoski, I., and Pörn, R.: ‘An extended cutting plane method for a class of non-convex MINLP problems’, Computers Chem. Engin.22, no. 3 (1998), 357–365.

    Google Scholar 

  137. Xia, Q., and Macchietto, S.: ‘Design and synthesis of batch plants: MINLP solution based on a stochastic method’, Computers Chem. Engin.21 (1997), S697–S702.

    Google Scholar 

  138. Yee, T. F., and Grossmann, I. E.: ‘Simultaneous optimization models for heat integration-II. Heat exchanger network synthesis’, Computers Chem. Engin.14, no. 10 (1990), 1165–1184.

    Google Scholar 

  139. Yee, T. F., Grossmann, I. E., and Kravanja, Z.: ‘Simultaneous optimization models for heat integration-I. Area and energy targeting and modeling of multi-stream exchangers’, Computers Chem. Engin.14, no. 10 (1990), 1151–1164.

    Google Scholar 

  140. Yee, T. F., Grossmann, I. E., and Kravanja, Z.: ‘Simultaneous optimization models for heat integration-III. Area and energy targeting and modeling of multi-stream exchangers’, Computers Chem. Engin.14, no. 11 (1990), 1185–1200.

    Google Scholar 

  141. Zamora, J. M., and Grossmann, I. E.: ‘Continuous global optimization of structured process systems models’, Computers Chem. Engin.22, no. 12 (1998), 1749–1770.

    Google Scholar 

  142. Zamora, J. M., and Grossmann, I. E.: ‘A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits’, Computers Chem. Engin.22, no. 3 (1998), 367–384.

    Google Scholar 

  143. Zhang, X., and Sargent, R. W.H.: ‘The optimal operation of mixed production facilities: General formulation and some solution approaches’, Proc. 5th Int. Symp. Process Systems Engineering, 1994, pp. 171–177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Floudas, C.A. (2001). Mixed Integer Nonlinear Programming . In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_301

Download citation

  • DOI: https://doi.org/10.1007/0-306-48332-7_301

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6932-5

  • Online ISBN: 978-0-306-48332-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics