Skip to main content

Carbonic Anhydrase and Its Role in Photosynthesis

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 9))

Summary

Carbonic anhydrase, an enzyme which catalyzes the reversible hydration of CO2, is a major protein component of most photosynthetic microorganisms and higher plant tissues. Once thought to be represented in plants by a single enzyme type, it is now apparent that DNA sequences and/or the encoded proteins for the evolutionarily distinct α, β and γ forms of carbonic anhydrase are present in cyanobacteria, green algae, and higher plants. While exhibiting a wide range in structure, localization, and regulation of expression, some progress has been made in the establishment of roles for these various enzyme forms. It would appear that the primary role of many of the α and β isoforms is the establishment of inorganic carbon species equilibration. As a result of this activity, enzymes or transport systems which require either CO2 or HCO 3 are not limited by the slow, uncatalyzed rate of CO2/HCO 3 interconversion. In contrast, little is known about patterns of expression or role(s) for γ isoforms. Recent studies on carbonic anhydrase described in this chapter include the isolation and characterization of new isoforms, the generation and phenotypic description of carbonic anhydrase mutants, as well as elucidation of mechanisms responsible for regulation of expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CA:

carbonic anhydrase

CCMs:

CO2 concentrating mechanisms

C1:

inorganic carbon

PEP:

phosphoenolpyruvate

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

References

  • Aizawa K and Miyachi S (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol Rev 39: 215–233

    CAS  Google Scholar 

  • Alber BE and Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina themophila. Proc Natl Acad Sci USA 91: 6909–6913

    CAS  PubMed  Google Scholar 

  • Amoroso G, Weber C, Sultemeyer D and Fock H (1996) Intracellular carbonic anhydrase activities in Dunaliella tertiolecta (Butcher) and Chlamydomonas reinhardtii (Dangeard) in relation to inorganic carbon concentration during growth: Further evidence for the existence of two distinct carbonic anhydrases associated with the chloroplast. Planta 199: 177–184

    Article  CAS  Google Scholar 

  • Anderson LE, Gibbons JT and Wang X (1996) Distribution often enzymes of carbon metabolism in pea (Pisum sativum) chloroplasts. Int J Plant Sci 157: 525–538

    Article  CAS  Google Scholar 

  • Badger MR and Pfanz H (1995) Effect of carbonic anhydrase inhibition on photosynthesis by leafpieces of C3 and C4 plants. Aust J Plant Physiol 22: 45–49

    CAS  Google Scholar 

  • Badger MR and Price GD (1994) The role of carbonic anhydrase in photosynthesis. Ann Rev Plant Physiol Plant Molec Biol 45: 369–392

    CAS  Google Scholar 

  • Bailly J and Coleman JR (1988) Effect of CO2 concentration on protein biosynthesis and carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol 87: 833–840

    CAS  Google Scholar 

  • Bjorkbacka H, Johansson I-M, Skarstad E and Forsman C (1997) The sulfhydral groups of Cys 269 and Cys 272 are critical for the oligomeric state of chloroplast carbonic anhydrase from Pisum sativum. Biochemistry 26: 4287–4294

    Google Scholar 

  • Bracey MH and Bartlett SG (1995) Sequence of a cDNA encoding carbonic anhydrase from barley. Plant Physiol 108: 433–434

    Article  CAS  PubMed  Google Scholar 

  • Bracey MH, Christiansen J, Tovar P, Cramer SP and Bartlett SG (1994) Spinach carbonic anhydrase: Investigation of the zinc-binding ligands by site-directed mutagenesis, elemental analysis, and EXAFS. Biochemistry 33: 13126–13131

    Article  CAS  PubMed  Google Scholar 

  • Burnell JN (1990) Immunological study of carbonic anhydrase in C3 and C4 plants using antibodies to maize cytosolic and spinach chloroplastic carbonic anhydrase. Plant Cell Physiol 31: 423–427

    CAS  Google Scholar 

  • Burnell JN and Hatch MD (1988) Low bundle sheath carbonic anhydrase is apparently essential for effective C4 pathway operation. Plant Physiol 86: 1251–1256

    Google Scholar 

  • Burnell JN and Ludwig M (1997) Characterisation of two cDNAs encoding carbonic anhydrase in maize leaves. Aust J Plant Physiol 24: 451–458

    CAS  Google Scholar 

  • Burnell JN, Gibbs MJ and Mason JG (1990a) Spinach chloroplastic carbonic anhydrase: Nucleotide sequence analysis of cDNA. Plant Physiol 92: 37–40

    CAS  Google Scholar 

  • Burnell JN, Suzuki I and Sugiyama T (1990b) Light induction and the effect of nitrogen status upon the activity of carbonic anhydrase in maize leaves. Plant Physiol 94: 384–387

    CAS  Google Scholar 

  • Coleman JR (1991) The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and green algae. Plant Cell Environ 14: 861–867

    CAS  Google Scholar 

  • Coleman JR and Grossman AR (1984) Biosynthesis of carbonic anhydrase in Chlamydomonas reinhardtii during adaptation to low CO2. Proc Natl Acad Sci USA 81: 6049–6053

    CAS  Google Scholar 

  • Cowan IR (1986) Economics of carbon fixation in higher plants. In: Givnish TJ (ed) On the Economy of Plant Form and Function, pp 130–170. Cambridge University Press, London

    Google Scholar 

  • Eriksson M, Karlsson J, Ramazanov Z, Gardestrom P and Samuelsson G (1996) Discovery of analgal mitochondrial carbonic anhydrase: Molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 93: 12031–12034

    Article  CAS  PubMed  Google Scholar 

  • Evans JR and von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110: 339–346

    CAS  PubMed  Google Scholar 

  • Fawcett TW, Browse JA, Volokita M and Bartlett SG (1990) Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. J Biol Chem 265: 5414–5417

    CAS  PubMed  Google Scholar 

  • Fett JP and Coleman JR (1994) Characterization and expression of two cDNAs encoding carbonic anhydrase in Arabidopsis thaliana. Plant Physiol 105: 707–713

    Article  CAS  PubMed  Google Scholar 

  • Forsman C and Pilon M (1995) Chloroplast import and sequential maturation of pea carbonic anhydrase: The roles of various parts of the transit peptide. FEBS Lett 358: 39–42

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Fukuzawa H, Tachiki A and Miyachi S (1990) Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 9779–9783

    CAS  PubMed  Google Scholar 

  • Fujiwara S, Ishida N and Tsuzuki M (1996) Circadian expression of the carbonic anhydrase gene Cah1, in Chlamydomonas reinhardtii. Plant Molec Biol 32: 745–749

    CAS  Google Scholar 

  • Fukuzawa H, Fujiwara S, Yamamoto Y, Dionisio-Sese ML and Miyachi S (1990) cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: Regulation by environmental CO2 concentration. Proc Natl Acad Sci USA 87: 8383–8387

    Google Scholar 

  • Fukuzawa H, Suzuki E, Komukai Y and Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon fixation in the cyanobacterium Synechococcus PCC7924. Proc Natl Acad Sci USA 89: 4437–4441

    CAS  PubMed  Google Scholar 

  • Funke RP, Kovar JL and Weeks DP (1997) Intracellular carbonic anhydrase in essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2, Demonstration via genomic complementation of the high CO2-requiring mutant ca-1. Plant Physiol 114: 237–244

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Chitty JA, von Caemmerer S and Jenkins CLD (1996) Antisense RNA inhibition of RbcS gene expression reduces Rubisco level and photosynthesis in the C4 plant Flaveria bidentis. Plant Physiol 111: 725–734

    CAS  PubMed  Google Scholar 

  • Geraghty AM and Spalding MH (1996) Molecular and structural changes in Chlamydomonas under limiting CO2 A possible mitochondrial role in adaptation. Plant Physiol 111: 1339–1347

    CAS  PubMed  Google Scholar 

  • Graham D, Reed ML, Patterson BD, Hockley DG and Dwyer MR (1984) Chemical properties, distribution and physiology of plant and algal carbonic anhy drases. Ann NY Acad Sci 429: 222–237

    CAS  PubMed  Google Scholar 

  • Guliev NM, Bairamov SM and Aliev DA (1992) Functional organization of carbonic anhydrase inhigher plants. Soviet Plant Physiol 39: 537–544

    Google Scholar 

  • Hatch MD and Burnell JN (1990) Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiol 93: 380–383

    Google Scholar 

  • Hewett-Emmett D and Tashian RE (1996) Functional diversity, conservation and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol 5: 50–77

    CAS  PubMed  Google Scholar 

  • Husic HD and Marcus CA (1994) Identification of intracellular carbonic anhydrase in Chlamydomonas reinhardtii with a carbonic anhydrase directed photoaffinity label. Plant Physiol 105: 133–139

    CAS  PubMed  Google Scholar 

  • Jang J-C, Leon P, Zhou L and Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19

    Article  CAS  PubMed  Google Scholar 

  • Jebanathirajah JA and Coleman JR (1998) Association of carbonic anhydrase with a Calvin cycle enzyme complex in Nicotiana tabacum. Planta 204: 117–182

    Article  Google Scholar 

  • Jenkins CLD, Burnell JN and Hatch MD (1987) Form ofinorganic carbon involved as a product and as an inhibitor of C4 acid decarboxylases operating in C4 photosynthesis. Plant Physiol 85: 952–957

    CAS  Google Scholar 

  • Jenkins CLD, Furbank RT and Hatch MD (1989) Mechanism of C4 photosynthesis. A model describing the inorganic carbon pool in bundle sheath cells. Plant Physiol 91: 1372–1381

    CAS  Google Scholar 

  • Johansson I-M and Forsman C (1992) Processing of the chloroplast transit peptide of pea carbonic anhydrase in chloroplasts and in E. coli. Identification of two cleavage sites. FEBS Lett 314: 232–236

    Article  CAS  PubMed  Google Scholar 

  • Johansson I-M and Forsman C (1993) Kinetic studies of pea carbonic anhydrase. Eur J Biochem 218: 439–446

    Article  CAS  PubMed  Google Scholar 

  • Kachru RB and Anderson L (1974) Chloroplast and cytoplasmic enzymes. V. Pea-leaf carbonic anhydrase. Planta 118: 235–240

    Article  CAS  Google Scholar 

  • Kamo T, Shimogawara K, Fukuzawa H, Muto S and Miyachi S (1990) Subunit composition of carbonic anhydrase from Chlamydomonas reinhardtii. Eur J Biochem 192: 557–562

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, Hiltonen T, Husic DH, Ramazanov Z and Samuelsson G (1995) Intracellular carbonic anhydrase of Chlamydomonas reinhardtii. Plant Physiol 109: 533–539

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, Clarke AK, Hugghins SY, Park Y-L, Husic HD, Moroney JV and Samuelsson G (1998) A novel α-typecarbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2 EMBO J 17: 1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ and Bartlett SG (1996) Transgenic Arabidopsis plants expressing carbonic anhydrase in the antisense orientation can not grow on MS media without sucrose. Plant Physiol (Suppl) 111: 96

    Google Scholar 

  • Kisker C, Schindelin H, Alber BE, Ferry JG and Rees DC (1996) A left-handed helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J 15: 2323–2330

    CAS  PubMed  Google Scholar 

  • Ludwig M and Burnell JN (1995) Molecular comparison of carbonic anhydrase from Flaveria species demonstrating different photosynthetic pathways. Plant Molec Biol 29: 353–365

    CAS  Google Scholar 

  • Ludwig M, von Caemmerer S, Price DE, Badger MR and Furbank RT (1998) Expression of tobacco carbonic anhydrase in the C4 dicot Flaveria bidentis leads to increased leakiness of the bundle sheath and a defective CO2-concentrating mechanism. Plant Physiol 117: 1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Makino A, Sakashita H, Hidema J, Mae T, Ojiima K and Osmond B (1992) Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiol 100: 1737–1743

    CAS  Google Scholar 

  • Majeau N and Coleman JR (1991) Isolation and characterization of a cDNA coding for pea chloroplastic carbonic anhydrase. Plant Physiol 95: 264–268

    CAS  Google Scholar 

  • Majeau N and Coleman JR (1992) Nucleotide sequence of a complementary DNA encoding tobacco chloroplastic carbonic anhydrase. Plant Physiol 100: 1077–1078

    CAS  Google Scholar 

  • Majeau N and Coleman JR (1994) Correlation of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol 104: 1393–1399

    CAS  PubMed  Google Scholar 

  • Majeau N and Coleman JR (1996) Effect of CO2 concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol 112: 569–574

    CAS  PubMed  Google Scholar 

  • Majeau N, Arnoldo MA and Coleman JR (1994) Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco. Plant Molec Biol 25: 377–385

    CAS  Google Scholar 

  • Matsuda Y and Colman B (1995) Induction of CO2 and bicarbonate transport in the green alga Chlorella ellipsoidea. Plant Physiol 108: 253–260

    CAS  PubMed  Google Scholar 

  • Maxwell K, von Caemmerer S and Evans JR (1997) Is the low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism. Aust J Plant Physiol 24: 777–786

    CAS  Google Scholar 

  • McKay MR, Gibbs SP and Espie GS (1993) Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 159: 21–29

    Article  CAS  Google Scholar 

  • Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, Mclntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E and Somerville C (1994) Genes galore A summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106: 1241–1255

    Article  CAS  PubMed  Google Scholar 

  • Poincelot RP (1979) Carbonic anhydrase. In: Gibbs M and Latzko E (eds) Encyclopedia of Plant Physiology, Vol 6 (2), pp 230–238. Springer-Verlag, Berlin

    Google Scholar 

  • Price GD, Coleman JR and Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100: 784–793

    CAS  Google Scholar 

  • Price GD, Howitt SM, Harrison K and Badger MR (1993) Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. Strain PCC7942 involved in carboxysome assembly and function. J Bacteriol 175: 2871–2879

    CAS  PubMed  Google Scholar 

  • Price GD, von Caemmerer S, Evans JR, Yu J-W, Lloyd J, Oja V, Kell P, Harrison K, Gallagher A and Badger MR (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco has a minor effect on photosynthetic CO2 assimilation. Planta 193: 331–340

    Article  CAS  Google Scholar 

  • Provart NJ, Majeau N and Coleman JR (1993) Characterization of pea chloroplast carbonic anhydrase. Expressionin E. coli and site-directed mutagenesis. Plant Molec Biol 22: 937–942

    CAS  Google Scholar 

  • Raines CA, Horsnell PR, Holder C and Lloyd JC (1992) Arabidopsis thaliana carbonic anhydrase: cDNA sequence and effect of CO2 on mRNA levels. Plant Molec Biol 20: 1143–1148

    CAS  Google Scholar 

  • Rawat M and Moroney JV (1991) Partial characterization of a new isozyme of carbonic anhydrase isolated from Chlamy-domonas reinhardtii. J Biol Chem 266: 9719–9723

    CAS  PubMed  Google Scholar 

  • Rawat M and Moroney JV (1995) The regulation of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase activase by light and CO2 in Chlamydomonas reinhardtii. Plant Physiol 109: 937–944

    CAS  PubMed  Google Scholar 

  • Reed ML and Graham D (1981) Carbonic anhydrase in plants: Distribution, properties and possible physiological roles. Progress Phytochem 7: 47–94

    CAS  Google Scholar 

  • Roeske CA and Ogren WL (1990) Nucleotide sequence of pea cDNA encoding chloroplast carbonic anhydrase. Nucl Acid Res 18: 3413

    CAS  Google Scholar 

  • Rowlett RS, Chance MR, Wirt MD, Sidelinger DE, Royal JR, Woodroffe M, Wang Y-HA, Saha R and Lam MG (1994) Kinetic and structural characterization of spinach carbonic anhydrase. Biochemistry 33: 13967–13976

    Article  CAS  PubMed  Google Scholar 

  • Rumeau D, Ciune S, Fina L, Gault N. Nicole M and Peltier G (1996) Subcellular distribution of carbonic anhydrase in Solanum tuberosum L. leaves. Planta 199: 79–88

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Samejima M and Ishii R (1996) Analysis of δ13C measurement on the mechanism of cultivar difference in leaf photosynthesis of rice (Oryza sativa L.) Plant Cell Physiol 37: 1161–1166

    CAS  Google Scholar 

  • Shiraiwa Y and Miyachi S (1983) Factors controlling induction of carbonic anhydrase and efficiency of photosynthesis in Chlorella vulgaris 11h cells. Plant Cell Physiol 24: 919–923

    CAS  Google Scholar 

  • Silverman DN (1991) The catalytic mechanism of carbonic anhydrase Can J Bot 69: 1070–1078

    CAS  Google Scholar 

  • Soltes-Rak E, Mulligan M and Coleman JR (1997) Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol 179: 769–774

    CAS  PubMed  Google Scholar 

  • Stemler AJ (1997) The case for chloroplast thylakoid carbonic anhydrase. Physiol Plant 99: 348–353

    Article  CAS  Google Scholar 

  • Sugiharto B, Suzuki I, Burnell JN and Sugiyama T (1992) Glutamine induces the N-dependent accumulation of mRNAs encoding phosphoenolpyruvate carboxylase and carbonic anhydrase in detached maize leaf tissue. Plant Physiol 100: 2066–2070

    CAS  Google Scholar 

  • Sultemeyer D, Schmidt C and Fock HP (1993) Carbonic anhydrases in higher plants and aquatic microorganisms. Physiol Plant 88: 179–190

    Article  Google Scholar 

  • Süss K-H, Arkona C, Manteuffel R and Adler K (1993) Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situ. Proc Natl Acad Sci USA 90: 5514–5518

    PubMed  Google Scholar 

  • Suzuki S and Burnell JN (1995) Nucleotide sequence of a cDNA encoding rice chloroplastic carbonic anhydrase. Plant Physiol 107: 299–300

    Article  CAS  PubMed  Google Scholar 

  • Tashian RE (1989) The carbonic anhydrases: Widening perspectives on their evolution, expression and function. Bioessays 10: 186–192

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki M, Miyachi S, Winter K and Edwards GE (1982) Localization of carbonic anhydrase in crassulacean acid metabolism plants. Plant Sci Lett 24: 211–218

    CAS  Google Scholar 

  • Tsuzuki M and Miyachi S (1989) The function of carbonic anhydrase in aquatic photosynthesis. Aquatic Bot 34: 85–104

    Article  CAS  Google Scholar 

  • Utsunomiya E and Muto S (1993) Carbonic anhydrase in the plasma membrane from leaves of C3 and C4 plants. Physiol Plant 88: 413–419

    Article  CAS  Google Scholar 

  • Villand P, Eriksson M and Samuelsson G (1997) Carbon dioxide and light regulation of promoters controlling the expression of mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Biochem J 327: 51–57

    CAS  PubMed  Google Scholar 

  • Villarejo A, Reina GG and Ramazanov Z (1996) Regulation of the low CO2 inducible polypeptides in Chlamydomonas reinhardtii. Planta 199: 481–485

    Article  CAS  Google Scholar 

  • Williams TG, Flanagan LB and Coleman JR (1996) Photosynthetic gas exchange and discrimination against 13CO2 and C18O16O in tobacco plants modified by an antisense construct to have low chloroplastic carbonic anhydrase. Plant Physiol 112: 319–326

    CAS  PubMed  Google Scholar 

  • Yu J-W, Price GD and Badger MR (1992) Isolation of a putative carboxysomal carbonic anhydrase gene from the cyano-bacterium Synechococcus PCC7942. Plant Physiol 100: 794–800

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Coleman, J.R. (2000). Carbonic Anhydrase and Its Role in Photosynthesis. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-48137-5_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-48137-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6143-5

  • Online ISBN: 978-0-306-48137-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics